OSA's Digital Library

Journal of the Optical Society of America A

Journal of the Optical Society of America A


  • Editor: Franco Gori
  • Vol. 30, Iss. 11 — Nov. 1, 2013
  • pp: 2347–2355

Waveguide-coupled nanowire as an optical antenna

Laurent Arnaud, Aurélien Bruyant, Mikael Renault, Yassine Hadjar, Rafael Salas-Montiel, Aniello Apuzzo, Gilles Lérondel, Alain Morand, Pierre Benech, Etienne Le Coarer, and Sylvain Blaize  »View Author Affiliations

JOSA A, Vol. 30, Issue 11, pp. 2347-2355 (2013)

View Full Text Article

Enhanced HTML    Acrobat PDF (931 KB) | SpotlightSpotlight on Optics Open Access

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We study the optical coupling between a gold nanowire and a silver ion-exchanged waveguide, with special emphasis on the nanowire antenna radiation pattern. We measure the radiation patterns of waveguide-coupled gold nanowires with a height of 70 nm and width of 50 or 150 nm in the 450–700 nm spectral range for TE and TM polarizations. We perform a systematic theoretical study on the wavelength, polarization, nanowire size, and material dependences on the properties of the radiation pattern. We also give some elements concerning absorption and near-field. Experiments and calculations show localized plasmon resonance for the polarization orthogonal to the wire (far-field resonance at 580 nm for the smallest wire and 670 nm for the widest). It is shown that a great variety of radiation patterns can be obtained, together with a high sensitivity to a change of one parameter, particularly near-resonance.

© 2013 Optical Society of America

OCIS Codes
(130.3120) Integrated optics : Integrated optics devices
(130.6010) Integrated optics : Sensors
(130.2755) Integrated optics : Glass waveguides

ToC Category:
Integrated Optics

Original Manuscript: July 8, 2013
Manuscript Accepted: August 16, 2013
Published: October 24, 2013

Virtual Issues
October 22, 2013 Spotlight on Optics

Laurent Arnaud, Aurélien Bruyant, Mikael Renault, Yassine Hadjar, Rafael Salas-Montiel, Aniello Apuzzo, Gilles Lérondel, Alain Morand, Pierre Benech, Etienne Le Coarer, and Sylvain Blaize, "Waveguide-coupled nanowire as an optical antenna," J. Opt. Soc. Am. A 30, 2347-2355 (2013)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. T. Vo-Dinh, “Biosensors, nanosensors and biochips: frontiers in environmental and medical diagnostics,” in Proceedings of the 1st International Symposium on Micro & Nano Technology, Hawaii (2004), pp. 14–17.
  2. K. Strelau, R. Kretschmer, R. Möller, W. Fritzsche, and J. Popp, “SERS as tool for the analysis of DNA-chips in a microfluidic platform,” Anal. Bioanal. Chem. 396, 1381–1384 (2010). [CrossRef]
  3. C. Delacour, S. Blaize, P. Grosse, J. Fedeli, A. Bruyant, R. Salas-Montiel, G. Lerondel, and A. Chelnokov, “Efficient directional coupling between silicon and copper plasmonic nanoslot waveguides: toward metal-oxide-silicon nanophotonics,” Nano Lett. 10, 2922–2926 (2010). [CrossRef]
  4. A. Akimov, A. Mukherjee, C. Yu, D. Chang, A. Zibrov, P. Hemmer, H. Park, and M. Lukin, “Generation of single optical plasmons in metallic nanowires coupled to quantum dots,” Nature 450, 402–406 (2007). [CrossRef]
  5. A. Politi, M. Cryan, J. Rarity, S. Yu, and J. O’Brien, “Silica-on-silicon waveguide quantum circuits,” Science 320, 646–649 (2008). [CrossRef]
  6. M. Paulus and O. Martin, “How to tap an innocent waveguide,” Opt. Express 8, 644–648 (2001). [CrossRef]
  7. J. Wen, S. Romanov, and U. Peschel, “Excitation of plasmonic gap waveguides by nanoantennas,” Opt. Express 17, 5925–5932 (2009). [CrossRef]
  8. J. Li and N. Engheta, “Core-shell nanowire optical antennas fed by slab waveguides,” IEEE Trans. Antennas Propag. 55, 3018–3026 (2007). [CrossRef]
  9. W. Ewe, H. Chu, E. Li, and B. Luk’yanchuk, “Field enhancement of gold optical nanoantennas mounted on a dielectric waveguide,” Appl. Phys. A 100, 315–319 (2010). [CrossRef]
  10. E. Cubukcu, E. Kort, K. Crozier, and F. Capasso, “Plasmonic laser antenna,” Appl. Phys. Lett. 89, 093120 (2006). [CrossRef]
  11. H. Hattori, Z. Li, and D. Liu, “Driving plasmonic nanoantennas with triangular lasers and slot waveguides,” Appl. Opt. 50, 2391–2400 (2011). [CrossRef]
  12. A. Alù and N. Engheta, “Wireless at the nanoscale: optical interconnects using matched nanoantennas,” Phys. Rev. Lett. 104, 213902 (2010). [CrossRef]
  13. E. Le Coarer, S. Blaize, P. Benech, I. Stefanon, A. Morand, G. Lérondel, G. Leblond, P. Kern, J. Fedeli, and P. Royer, “Wavelength-scale stationary-wave integrated Fourier-transform spectrometry,” Nat. Photonics 1, 473–478 (2007). [CrossRef]
  14. J. Ferrand, G. Custillon, G. Leblond, F. Thomas, T. Moulin, E. Le Coarer, A. Morand, S. Blaize, T. Gonthiez, and P. Benech, “Stationary wave integrated Fourier transform spectrometer (swifts),” Proc. SPIE 7604, 760414 (2010). [CrossRef]
  15. K. Kim, S. Yoon, and D. Kim, “Nanowire-based enhancement of localized surface plasmon resonance for highly sensitive detection: a theoretical study,” Opt. Express 14, 12419–12431 (2006). [CrossRef]
  16. MONA, “A European roadmap for photonics and nanotechnologies,” 2008, http://www.ist-mona.org/ .
  17. F. Degirmenci, I. Bulu, P. Deotare, M. Khan, M. Loncar, and F. Capasso, “Waveguide integrated plasmonic platform for sensing and spectroscopy,” Proc. SPIE 7941, 794117 (2011). [CrossRef]
  18. M. Righini, G. Volpe, C. Girard, D. Petrov, and R. Quidant, “Surface plasmon optical tweezers: tunable optical manipulation in the femtonewton range,” Phys. Rev. Lett. 100, 186804 (2008). [CrossRef]
  19. L. Novotny, R. Bian, and X. Xie, “Theory of nanometric optical tweezers,” Phys. Rev. Lett. 79, 645–648 (1997). [CrossRef]
  20. P. Lalanne and E. Silberstein, “Fourier-modal methods applied to waveguide computational problems,” Opt. Lett. 25, 1092–1094 (2000). [CrossRef]
  21. J. Broquin, “Glass integrated optics: state of the art and position toward other technologies,” Proc. SPIE 6475, 647507 (2007). [CrossRef]
  22. A. Tervonen, B. West, and S. Honkanen, “Ion-exchanged glass waveguide technology: a review,” Opt. Eng. 50, 071107 (2011). [CrossRef]
  23. M. Moharam, E. Grann, D. Pommet, and T. Gaylord, “Formulation for stable and efficient implementation of the rigorous coupled-wave analysis of binary gratings,” J. Opt. Soc. Am. A 12, 1068–1076 (1995). [CrossRef]
  24. M. Neviere and E. Popov, Light Propagation in Periodic Media: Differential Theory and Design (Marcel Dekker, 2003).
  25. E. Palik and G. Ghosh, Handbook of Optical Constants of Solids (Academic, 1998), Vol. 3.
  26. A. Vial and T. Laroche, “Description of dispersion properties of metals by means of the critical points model and application to the study of resonant structures using the FDTD method,” J. Phys. D 40, 7152 (2007). [CrossRef]
  27. W. Lukosz and R. Kunz, “Light emission by magnetic and electric dipoles close to a plane dielectric interface. II. Radiation patterns of perpendicular oriented dipoles,” J. Opt. Soc. Am. 67, 1615–1619 (1977). [CrossRef]
  28. B. Ross and L. Lee, “Comparison of near-and far-field measures for plasmon resonance of metallic nanoparticles,” Opt. Lett. 34, 896–898 (2009). [CrossRef]
  29. M. Beversluis, A. Bouhelier, and L. Novotny, “Continuum generation from single gold nanostructures through near-field mediated intraband transitions,” Phys. Rev. B 68, 115433 (2003). [CrossRef]
  30. P. Johnson and R. Christy, “Optical constants of the noble metals,” Phys. Rev. B 6, 4370–4379 (1972). [CrossRef]
  31. H. Wang, F. Tam, N. Grady, and N. Halas, “Cu nanoshells: effects of interband transitions on the nanoparticle plasmon resonance,” J. Phys. Chem. B 109, 18218–18222 (2005). [CrossRef]
  32. P. Taneja, P. Ayyub, and R. Chandra, “Size dependence of the optical spectrum in nanocrystalline silver,” Phys. Rev. B 65, 245412 (2002). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited