OSA's Digital Library

Journal of the Optical Society of America A

Journal of the Optical Society of America A

| OPTICS, IMAGE SCIENCE, AND VISION

  • Editor: Franco Gori
  • Vol. 30, Iss. 11 — Nov. 1, 2013
  • pp: 2372–2380

Microcellular propagation prediction model based on an improved ray tracing algorithm

Z.-Y. Liu, L.-X. Guo, and T.-Q. Fan  »View Author Affiliations


JOSA A, Vol. 30, Issue 11, pp. 2372-2380 (2013)
http://dx.doi.org/10.1364/JOSAA.30.002372


View Full Text Article

Enhanced HTML    Acrobat PDF (842 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Two-dimensional (2D)/two-and-one-half-dimensional ray tracing (RT) algorithms for the use of the uniform theory of diffraction and geometrical optics are widely used for channel prediction in urban microcellular environments because of their high efficiency and reliable prediction accuracy. In this study, an improved RT algorithm based on the “orientation face set” concept and on the improved 2D polar sweep algorithm is proposed. The goal is to accelerate point-to-point prediction, thereby making RT prediction attractive and convenient. In addition, the use of threshold control of each ray path and the handling of visible grid points for reflection and diffraction sources are adopted, resulting in an improved efficiency of coverage prediction over large areas. Measured results and computed predictions are also compared for urban scenarios. The results indicate that the proposed prediction model works well and is a useful tool for microcellular communication applications.

© 2013 Optical Society of America

OCIS Codes
(080.1510) Geometric optics : Propagation methods
(290.4210) Scattering : Multiple scattering
(350.5500) Other areas of optics : Propagation
(080.5692) Geometric optics : Ray trajectories in inhomogeneous media
(070.7345) Fourier optics and signal processing : Wave propagation

ToC Category:
Geometric Optics

History
Original Manuscript: August 29, 2013
Revised Manuscript: October 3, 2013
Manuscript Accepted: October 5, 2013
Published: October 25, 2013

Citation
Z.-Y. Liu, L.-X. Guo, and T.-Q. Fan, "Microcellular propagation prediction model based on an improved ray tracing algorithm," J. Opt. Soc. Am. A 30, 2372-2380 (2013)
http://www.opticsinfobase.org/josaa/abstract.cfm?URI=josaa-30-11-2372


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. J. H. Tarng and K. M. Ju, “A novel 3-D scattering model of 1.8-GHz radio propagation in microcellular urban environment,” IEEE Trans. Electromagn. Compat. 41, 100–106 (1999). [CrossRef]
  2. D. N. Schettino, F. J. S. Moreira, and C. G. Rego, “Efficient ray tracing for radio channel characterization of urban scenarios,” IEEE Trans. Magn. 43, 1305–1308 (2007). [CrossRef]
  3. S. Y. Tan and H. S. Tan, “UTD propagation model in an urban street scene for microcellular communications,” IEEE Trans. Electromagn. Compat. 35, 423–428 (1993). [CrossRef]
  4. F. A. Agelet, A. Formella, J. M. H. Rabanos, F. I. de Vicente, and F. P. Fontan, “Efficient ray-tracing acceleration techniques for radio propagation modeling,” IEEE Trans. Veh. Technol. 49, 2089–2104 (2000). [CrossRef]
  5. V. Degli-Eposti, G. Lombardi, C. Passerini, and G. Riva, “Wide-band measurement and ray-tracing simulation of the 1900-MHz indoor propagation channel: comparison criteria and results,” IEEE Trans. Antennas Propag. 49, 1101–1110 (2001). [CrossRef]
  6. H. M. El-Sallabi, G. Liang, H. L. Bertoni, I. T. Rekanos, and P. Vainikainen, “Influence of diffraction coefficient and corner shape on ray prediction of power and delay spread in urban microcells,” IEEE Trans. Antennas Propag. 50, 703–712 (2002). [CrossRef]
  7. G. Liang and H. L. Bertoni, “A new approach to 3-D ray tracing for propagation prediction in cities,” IEEE Trans. Antennas Propag. 46, 853–863 (1998). [CrossRef]
  8. D. Erricolo, “Experimental validation of second-order diffraction coefficients for computation of path-loss past buildings,” IEEE Trans. Electromagn. Compat. 44, 272–273 (2002). [CrossRef]
  9. T. K. Sarkar, Z. Ji, K. Kim, A. Medouri, and M. Salazar-Palma, “A survey of various propagation models for mobile communication,” IEEE Antennas Propag. Mag. 45(3), 51–82 (2003). [CrossRef]
  10. M. F. Iskander and Z. Yun, “Propagation prediction models for wireless communication systems,” IEEE Trans. Microwave Theor. Tech. 50, 662–673 (2002). [CrossRef]
  11. J. P. Rossi and Y. Gabillet, “A mixed ray launching/tracing method for full 3-D UHF propagation modeling and comparison with wide-band measurements,” IEEE Trans. Antennas Propag. 50, 517–523 (2002). [CrossRef]
  12. A. Toscano, F. Bilotti, and L. Vegni, “Fast ray-tracing technique for electromagnetic field prediction in mobile communications,” IEEE Trans. Magn. 39, 1238–1241 (2003). [CrossRef]
  13. M. Dottling, A. Jahn, D. Didascalou, and W. Wiesbeck, “Two- and three-dimensional ray tracing applied to the land mobile satellite (LMS) propagation channel,” IEEE Antennas Propag. Mag. 43(6), 27–37 (2001). [CrossRef]
  14. V. Degli-Esposti, F. Fuschini, E. M. Vitucci, and G. Falciasecca, “Speed-up techniques for ray tracing field prediction models,” IEEE Trans. Antennas Propag. 57, 1469–1480 (2009). [CrossRef]
  15. K. H. Ng, E. K. Tameh, A. Doufexi, M. Hunukumbure, and A. R. Nix, “Efficient multielement ray tracing with site-specific comparisons using measured MIMO channel data,” IEEE Trans. Veh. Technol. 56, 1019–1032 (2007). [CrossRef]
  16. P. Combeau, R. Vauzelle, Y. Pousset, and L. Aveneau, “An optimization in computation time for the prediction of radio coverage zones,” Radio Sci. 42, RS1003 (2007). [CrossRef]
  17. W. M. O’Brien, E. M. Kenny, and P. J. Cullen, “An efficient implementation of a three-dimensional microcell propagation tool for indoor and outdoor urban environments,” IEEE Trans. Veh. Technol. 49, 622–630 (2000). [CrossRef]
  18. Z. Y. Liu and L. X. Guo, “A quasi three-dimensional ray tracing method based on the virtual source tree in urban microcellular environments,” Prog. Electromagn. Res. 118, 397–414 (2011). [CrossRef]
  19. H. T. Liu, B. H. Li, and D. S. Qi, “Novel geometrical database model for line-based GIS urban maps in 2D/2.5D ray-tracing algorithms,” Microwave Opt. Technol. Lett. 43, 307–310 (2004).
  20. H. Son and N. Myung, “A deterministic ray tube method for microcellular wave propagation prediction model,” IEEE Trans. Antennas Propag. 47, 1344–1350 (1999). [CrossRef]
  21. M. F. Catedra, J. Perez, F. S. De Adana, and O. Gutierrez, “Efficient ray-tracing techniques for three-dimensional analyses of propagation in mobile communications: application to picocell and microcell scenarios,” IEEE Antennas Propag. Mag. 40(2), 15–28 (1998). [CrossRef]
  22. J. G. Cleary and G. Wyvill, “Analysis of an algorithm for fast ray tracing using uniform space subdivision,” Vis. Comput. 4, 65–83 (1988). [CrossRef]
  23. H. M. El-Sallabi and P. Vainikainen, “Improvements to diffraction coefficient for non-perfectly conducting wedges,” IEEE Trans. Antennas Propag. 53, 3105–3109 (2005). [CrossRef]
  24. G. L. Turin, F. D. Clapp, T. L. Johnston, S. B. Fine, and D. Lavry, “A statistical model of urban multipath propagation,” IEEE Trans. Veh. Technol. 21, 1–9 (1972). [CrossRef]
  25. F. A. Agelet, F. P. Fontan, and A. Formella, “Fast ray-tracing for microcellular and indoor environments,” IEEE Trans. Magn. 33, 1484–1487 (1997). [CrossRef]
  26. C. Saeidi, A. Fard, and F. Hodjatkashani, “Full three-dimensional radio wave propagation prediction model,” IEEE Trans. Antennas Propag. 60, 2462–2471 (2012). [CrossRef]
  27. J. H. Whittdker, “Measurements of path loss at 910  MHz for proposed microcell urban mobile systems,” IEEE Trans. Veh. Technol. 37, 125–129 (1988). [CrossRef]
  28. S. Y. Tan and H. S. Tan, “A microcellular communications propagation model based on the uniform theory of diffraction and multiple image theory,” IEEE Trans. Antennas Propag. 44, 1317–1326 (1996). [CrossRef]
  29. J. A. J. Rustako, N. Amitay, G. J. Owens, and R. S. Roman, “Radio propagation at microwave frequencies for line-of-sight microcellular moblle and personal communications,” IEEE Trans. Veh. Technol. 40, 203–210 (1991). [CrossRef]
  30. Q. Sun, S. Y. Tan, and K. C. Teh, “Analytical formulae for path loss prediction in urban street grid microcellular environments,” IEEE Trans. Veh. Technol. 54, 1251–1258 (2005). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited