OSA's Digital Library

Journal of the Optical Society of America A

Journal of the Optical Society of America A

| OPTICS, IMAGE SCIENCE, AND VISION

  • Editor: Franco Gori
  • Vol. 30, Iss. 11 — Nov. 1, 2013
  • pp: 2381–2394

Improving the performance of image classification by Hahn moment invariants

Mhamed Sayyouri, Abdeslam Hmimid, and Hassan Qjidaa  »View Author Affiliations


JOSA A, Vol. 30, Issue 11, pp. 2381-2394 (2013)
http://dx.doi.org/10.1364/JOSAA.30.002381


View Full Text Article

Enhanced HTML    Acrobat PDF (829 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

The discrete orthogonal moments are powerful descriptors for image analysis and pattern recognition. However, the computation of these moments is a time consuming procedure. To solve this problem, a new approach that permits the fast computation of Hahn’s discrete orthogonal moments is presented in this paper. The proposed method is based, on the one hand, on the computation of Hahn’s discrete orthogonal polynomials using the recurrence relation with respect to the variable x instead of the order n and the symmetry property of Hahn’s polynomials and, on the other hand, on the application of an innovative image representation where the image is described by a number of homogenous rectangular blocks instead of individual pixels. The paper also proposes a new set of Hahn’s invariant moments under the translation, the scaling, and the rotation of the image. This set of invariant moments is computed as a linear combination of invariant geometric moments from a finite number of image intensity slices. Several experiments are performed to validate the effectiveness of our descriptors in terms of the acceleration of time computation, the reconstruction of the image, the invariability, and the classification. The performance of Hahn’s moment invariants used as pattern features for a pattern classification application is compared with Hu [IRE Trans. Inform. Theory 8, 179 (1962)] and Krawchouk [IEEE Trans. Image Process. 12, 1367 (2003)] moment invariants.

© 2013 Optical Society of America

OCIS Codes
(100.0100) Image processing : Image processing
(100.3010) Image processing : Image reconstruction techniques
(100.5760) Image processing : Rotation-invariant pattern recognition
(100.4994) Image processing : Pattern recognition, image transforms

ToC Category:
Image Processing

History
Original Manuscript: June 24, 2013
Revised Manuscript: August 23, 2013
Manuscript Accepted: September 23, 2013
Published: October 25, 2013

Citation
Mhamed Sayyouri, Abdeslam Hmimid, and Hassan Qjidaa, "Improving the performance of image classification by Hahn moment invariants," J. Opt. Soc. Am. A 30, 2381-2394 (2013)
http://www.opticsinfobase.org/josaa/abstract.cfm?URI=josaa-30-11-2381


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. M. K. Hu, “Visual pattern recognition by moment invariants,” IRE Trans. Inform. Theory 8, 179–187 (1962).
  2. M. R. Teague, “Image analysis via the general theory of moments,” J. Opt. Soc. Am. 70, 920–930 (1980). [CrossRef]
  3. C. H. Teh and R. T. Chin, “On image analysis by the method of moments,” IEEE Trans. Pattern Anal. Mach. Intell. 10, 496–513 (1988). [CrossRef]
  4. A. Khotanzad and Y. H. Hong, “Invariant image recognition by Zernike moments,” IEEE Trans. Pattern Anal. Mach. Intell. 12, 489–497 (1990). [CrossRef]
  5. S. X. Liao and M. Pawlak, “On image analysis by moments,” IEEE Trans. Pattern Anal. Mach. Intell. 18, 254–266 (1996). [CrossRef]
  6. C. W. Chong, R. Paramesran, and R. Mukundan, “Translation and scale invariants of Legendre moments,” Pattern Recogn. 37, 119–129 (2004). [CrossRef]
  7. H. Lin, J. Si, and G. P. Abousleman, “Orthogonal rotation-invariant moments for digital image processing,” IEEE Trans. Image Process. 17, 272–282 (2008). [CrossRef]
  8. B. Yang, G. Li, H. Zhang, and M. Dai, “Rotation and translation invariants of Gaussian–Hermite moments,” Pattern Recogn. Lett. 32, 1283–1298 (2011). [CrossRef]
  9. R. Mukundan, S. H. Ong, and P. A. Lee, “Image analysis by Tchebichef moments,” IEEE Trans. Image Process. 10, 1357–1364 (2001). [CrossRef]
  10. P. T. Yap, R. Paramesran, and S. H. Ong, “Image analysis by Krawchouk moments,” IEEE Trans. Image Process. 12, 1367–1377 (2003). [CrossRef]
  11. H. Zhu, M. Liu, H. Shu, H. Zhang, and L. Luo, “General form for obtaining discrete orthogonal moments,” IET Image Process. 4, 335–352 (2010). [CrossRef]
  12. M. Sayyouri, A. Hmimd, and H. Qjidaa, “A fast computation of Charlier moments for binary and gray-scale images,” in The 2nd Edition of the IEEE Colloquium on Information Sciences and Technology (CIST’12), Fez, Morocco, October22–24, 2012.
  13. P. T. Yap, P. Raveendran, and S. H. Ong, “Image analysis using Hahn moments,” IEEE Trans. Pattern Anal. Mach. Intell. 29, 2057–2062 (2007). [CrossRef]
  14. M. Sayyouri, A. Hmimd, and H. Qjidaa, “A fast computation of Hahn moments for binary and gray-scale images,” in IEEE International Conference on Complex Systems (ICCS’12), Agadir, Morocco, November5–6, 2012.
  15. L. Yang and F. Albregtsen, “Fast and exact computation of Cartesian geometric moments using discrete Green’s theorem,” Pattern Recogn. 29, 1069–1073 (1996).
  16. I. M. Spiliotis and B. G. Mertzios, “Real-time computation of two-dimensional moments on binary images using image block representation,” IEEE Trans. Image Process. 7, 1609–1615 (1998). [CrossRef]
  17. K. M. Hosny, “Exact and fast computation of geometric moments for gray level images,” Appl. Math. Comput. 189, 1214–1222 (2007). [CrossRef]
  18. H. Z. Shu, H. Zhang, B. J. Chen, P. Haigron, and L. M. Luo, “Fast computation of Tchebichef moments for binary and gray-scale images,” IEEE Trans. Image Process. 19, 3171–3180 (2010). [CrossRef]
  19. G. A. Papakostas, E. G. Karakasis, and D. E. Koulourisotis, “Efficient and accurate computation of geometric moments on gray-scale images,” Pattern Recogn. 41, 1895–1904 (2008). [CrossRef]
  20. C. Lim, B. Honarvar, K. H. Thung, and R. Paramesran, “Fast computation of exact Zernike moments using cascaded digital filters,” Inf. Sci. 181, 3638–3651 (2011). [CrossRef]
  21. G. A. Papakostas, E. G. Karakasis, and D. E. Koulouriotis, “Accurate and speedy computation of image Legendre moments for computer vision applications,” Image Vision Comput. 28, 414–423 (2010). [CrossRef]
  22. J. Flusser, “Pattern recognition by affine moment invariants,” Pattern Recogn. 26, 167–174 (1993). [CrossRef]
  23. C.-W. Chong, P. Raveendran, and R. Mukundan, “Translation invariants of Zernike moments,” Pattern Recogn. 36, 1765–1773 (2003). [CrossRef]
  24. C.-W. Chong, P. Raveendran, and R. Mukundan, “Translation and scale invariants of Legendre moments,” Pattern Recogn. 37, 119–129 (2004). [CrossRef]
  25. H. Zhu, H. Shu, T. Xia, L. Luo, and J. L. Coatrieux, “Translation and scale invariants of Tchebichef moments,” Pattern Recogn. 40, 2530–2542 (2007). [CrossRef]
  26. G. A. Papakostas, E. G. Karakasis, and D. E. Koulouriotis, “Novel moment invariants for improved classification performance in computer vision applications,” Pattern Recogn. 43, 58–68 (2010). [CrossRef]
  27. H. Zhu, H. Shu, J. Zhou, L. Luo, and J. L. Coatrieux, “Image analysis by discrete orthogonal dual Hahn moments,” Pattern Recogn. Lett. 28, 1688–1704 (2007). [CrossRef]
  28. E. G. Karakasis, G. A. Papakostas, D. E. Koulouriotis, and V. D. Tourassis, “Generalized dual Hahn moment invariants,” Pattern Recogn. 46, 1998–2014 (2013). [CrossRef]
  29. H. Zhang, H. Z. Shu, G. N. Han, G. Coatrieux, L. M. Luo, and J. L. Coatrieux, “Blurred image recognition by Legendre moment invariants,” IEEE Trans. Image Process. 19, 596–611 (2010). [CrossRef]
  30. R. Koekoek, P. A. Lesky, and R. F. Swarttouw, Hypergeometric Orthogonal Polynomials and Their q-Analogues, Springer Monographs in Mathematics, Library of Congress Control Number: 2010923797 (Springer-Verlag, 2010).
  31. A. F. Nikiforov, S. K. Suslov, and V. B. Uvarov, Classical Orthogonal Polynomials of a Discrete Variable (Springer, 1991).
  32. http://www.dabi.temple.edu/~shape/MPEG7/dataset.html .
  33. R. Mukundan and K. R. Ramakrishnan, Moment Functions in Image Analysis (World Scientific, 1998).
  34. http://www.cs.columbia.edu/CAVE/software/softlib/coil-20.php .
  35. K. M. Hosny, “Fast computation of accurate Gaussian–Hermite moments for image processing applications,” Digit. Signal Process. 22, 476–485 (2012). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited