OSA's Digital Library

Journal of the Optical Society of America A

Journal of the Optical Society of America A

| OPTICS, IMAGE SCIENCE, AND VISION

  • Editor: Franco Gori
  • Vol. 30, Iss. 11 — Nov. 1, 2013
  • pp: 2401–2408

Modeling lateral geniculate nucleus response with contrast gain control. Part 1: formulation

Davis Cope, Barbara Blakeslee, and Mark E. McCourt  »View Author Affiliations


JOSA A, Vol. 30, Issue 11, pp. 2401-2408 (2013)
http://dx.doi.org/10.1364/JOSAA.30.002401


View Full Text Article

Enhanced HTML    Acrobat PDF (561 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

A class of models for lateral geniculate nucleus (LGN) on-cell behavior is proposed. The models consist of a linear filter with divisive normalization by root mean square local contrast and include an intrinsic noise density parameter. The properties of these models are shown to match observed LGN behavior: (1) a linear response to low-magnitude stimuli; (2) a linear response without saturation (luxotonic behavior) for zero-contrast stimuli (homogeneous fields) with increasing magnitude; and (3) response saturation for nonzero contrast stimuli with increasing magnitude. The models possess an intrinsic scale for signal-to-noise ratio (SNR). The models show under and supersaturation, as well as saturation, for sinusoidal grating stimuli with increasing contrast and predict that different SNR regimes will cause a single neuron to show different contrast response curves. A companion paper [1] provides a detailed analysis of the full nonlinear response for sinusoidal grating stimuli and circular spot stimuli.

© 2013 Optical Society of America

OCIS Codes
(330.0330) Vision, color, and visual optics : Vision, color, and visual optics
(330.4060) Vision, color, and visual optics : Vision modeling
(330.4270) Vision, color, and visual optics : Vision system neurophysiology
(330.6110) Vision, color, and visual optics : Spatial filtering
(330.7320) Vision, color, and visual optics : Vision adaptation

ToC Category:
Vision, Color, and Visual Optics

History
Original Manuscript: May 28, 2013
Revised Manuscript: August 7, 2013
Manuscript Accepted: October 3, 2013
Published: October 28, 2013

Virtual Issues
Vol. 9, Iss. 1 Virtual Journal for Biomedical Optics

Citation
Davis Cope, Barbara Blakeslee, and Mark E. McCourt, "Modeling lateral geniculate nucleus response with contrast gain control. Part 1: formulation," J. Opt. Soc. Am. A 30, 2401-2408 (2013)
http://www.opticsinfobase.org/josaa/abstract.cfm?URI=josaa-30-11-2401


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. D. Cope, B. Blakeslee, and M. E. McCourt, “Modeling lateral geniculate nucleus response with contrast gain control. Part 2. Analysis,” J. Opt. Soc. Am. A (submitted).
  2. D. H. Hubel, “Single unit activity in the lateral geniculate body and optic tract of unrestrained cats,” J. Physiol. 150, 91–104 (1960).
  3. D. H. Hubel and T. N. Wiesel, “Integrative action in the cat’s lateral geniculate body,” J. Physiol. 155, 385–398 (1961).
  4. A. M. Derrington and P. Lennie, “Spatial and temporal contrast sensitivities of neurons in lateral geniculate nucleus of macaque,” J. Physiol. 357, 219–240 (1984).
  5. E. Kaplan, K. Purpura, and R. M. Shapley, “Contrast affects the transmission of visual information through the mammalian lateral geniculate nucleus,” J. Physiol. 391, 267–288 (1987).
  6. A. Kayser, N. J. Priebe, and K. D. Miller, “Contrast-dependent nonlinearities arise locally in a model of contrast-invariant orientation tuning,” J. Neurophysiol. 85, 2130–2149 (2001).
  7. V. Bonin, V. Mante, and M. Carandini, “Nonlinear processing in LGN neurons,” in Advances in Neural Information Processing Systems 16, S. Thrun, L. Saul, and B. Schölkopf, eds. (MIT, 2004), pp. 1443–1450.
  8. V. Bonin, V. Mante, and M. Carandini, “The suppressive field of neurons in lateral geniculate nucleus,” J. Neurosci. 25, 10844–10856 (2005). [CrossRef]
  9. T. Duong and R. D. Freeman, “Spatial frequency-specific contrast adaptation originates in primary visual cortex,” J. Neurophysiol. 98, 187–195 (2007). [CrossRef]
  10. V. Mante, V. Bonin, and M. Carandini, “Functional mechanisms shaping lateral geniculate responses to artificial and natural stimuli,” Neuron 58, 625–638 (2008). [CrossRef]
  11. T. Shou, X. Li, Y. Zhou, and B. Hu, “Adaptation of visually evoked responses of relay cells in the dorsal lateral geniculate nucleus of the cat following prolonged exposure to drifting gratings,” Vis. Neurosci. 13, 605–613 (1996). [CrossRef]
  12. S. G. Solomon, J. W. Peirce, N. T. Dhruv, and P. Lennie, “Profound contrast adaptation early in the visual pathway,” Neuron 42, 155–162 (2004). [CrossRef]
  13. J. W. Peirce, “The potential importance of saturating and supersaturating contrast response functions in visual cortex,” J. Vis. 7(6):13, 1–10 (2007). [CrossRef]
  14. G. H. Jacobs and R. L. Yolton, “Center-surround balance in receptive fields of cells in the lateral geniculate nucleus,” Vis. Res. 10, 1127–1144 (1970). [CrossRef]
  15. R. T. Marrocco, “Maintained activity of monkey optic tract fibers and lateral geniculate nucleus cells,” Vis. Res. 12, 1175–1181 (1972). [CrossRef]
  16. J. Papaioannou and A. White, “Maintained activity of lateral geniculate nucleus neurons as a function of background luminance,” Exp. Neurol. 34, 558–566 (1972). [CrossRef]
  17. R. T. Marrocco, “Possible neural basis for brightness magnitude estimates,” Brain Res. 86, 128–133 (1975). [CrossRef]
  18. R. B. Barlow and R. Verillo, “Brightness sensation in a ganzfeld,” Vis. Res. 16, 1291–1297 (1976). [CrossRef]
  19. R. W. Doty, “Tonic retinal influences in primates,” Ann. N.Y. Acad. Sci. 290, 139–151 (1977). [CrossRef]
  20. P. D. Spear, D. C. Smith, and L. L. Williams, “Visual receptive-field properties of single neurons in cat’s ventral lateral geniculate nucleus,” J. Neurophysiol. 40, 390–409 (1977).
  21. R. B. Barlow, D. M. Snodderly, and H. A. Swadlow, “Intensity coding in primate visual system,” Exp. Brain Res. 31, 163–177 (1978). [CrossRef]
  22. Y. Kayama, R. R. Riso, J. R. Bartlett, and R. W. Doty, “Luxotonic responses of units in macaque striate cortex,” J. Neurophysiol. 42, 1495–1517 (1979).
  23. P. D. Spear, R. J. Moore, C. B. Y. Kim, J.-T. Xue, and N. Tumosa, “Effects of aging on the primate visual system: spatial and temporal processing by lateral geniculate neurons in young adult and old rhesus monkeys,” J. Neurophysiol. 72, 402–420 (1994).
  24. S. D. Van Hooser, J. Alexander, F. Heimel, and S. B. Nelson, “Receptive field properties and laminar organization of lateral geniculate nucleus in the gray squirrel (Sciurus carolinesis),” J. Neurophysiol. 90, 3398–3418 (2003). [CrossRef]
  25. T. R. Tucker and D. Fitzpatrick, “Luminance-evoked inhibition in primary visual cortex: a transient veto of simultaneous and ongoing response,” J. Neurosci. 26, 13537–13547 (2006). [CrossRef]
  26. H. J. Alitto, B. D. Moore, D. L. Rathburn, and W. M. Ursey, “A comparison of visual responses in the lateral geniculate nucleus of alert and anaesthetized macaque monkeys,” J. Physiol. 589, 87–99 (2011). [CrossRef]
  27. D. G. Albrecht, W. S. Geisler, and A. M. Crane, “Nonlinear properties of visual cortex neurons: temporal dynamics, stimulus selectivity, neural performance,” in The Visual Neurosciences, L. M. Chalupa and J. S. Werner, eds. (MIT, 2003), Vol. 1, pp. 747–764.
  28. R. W. Rodieck, “Quantitative analysis of cat retinal ganglion cell response to visual stimuli,” Vis. Res. 5, 583–601 (1965). [CrossRef]
  29. C. Enroth-Cugell and J. G. Robson, “The contrast sensitivity of retinal ganglion cells of the cat,” J. Physiol. 187, 517–552 (1966).
  30. V. Mante, R. A. Frazor, V. Bonin, W. S. Geisler, and M. Carandini, “Independence of luminance and contrast in natural scenes and in the early visual system,” Nat. Neurosci. 8, 1690–1697 (2005). [CrossRef]
  31. R. A. Frazor and W. S. Geisler, “Local luminance and contrast in natural images,” Vis. Res. 46, 1585–1598 (2006). [CrossRef]
  32. M. Carandini and D. J. Heeger, “Normalization as a canonical neural computation,” Nat. Rev. Neurosci. 13, 51–62 (2012). [CrossRef]
  33. J. G. Robson, “Neural images: the physiological basis of spatial vision,” in Visual Coding and Adaptability, C. S. Harris, ed. (Lawrence Erlbaum Associates, 1980), pp. 177–214.
  34. J. B. Levitt, R. A. Schumer, S. M. Sherman, P. D. Spear, and J. A. Movshon, “Visual response properties of neurons in the LGN of normally reared and visually deprived macaque monkeys,” J. Neurophysiol. 85, 2111–2129 (2001).
  35. G. E. Irvin, V. A. Casagrande, and T. T. Norton, “Center/surround relationships of magnocellular, parvocellular, and koniocellular relay cells in primate lateral geniculate nucleus,” Vis. Neurosci. 10, 363–373 (1993). [CrossRef]
  36. J. Kremers and S. Weiss, “Receptive field dimensions of lateral geniculate cells in the common marmoset (Callithrix jacchus),” Vis. Res. 37, 2171–2181 (1997). [CrossRef]
  37. A. J. R. White, S. G. Solomon, and P. R. Martin, “Spatial properties of koniocellular cells in the lateral geniculate nucleus of the marmoset Callithrix jacchus,” J. Physiol. 533, 519–535 (2001). [CrossRef]
  38. L. P. O’ Keefe, J. B. Levitt, D. C. Kiper, R. M. Shapley, and J. A. Movshon, “Functional organization of owl monkey lateral geniculate nucleus and visual cortex,” J. Neurophysiol. 80, 594–609 (1998).
  39. X. Xu, A. B. Bonds, and V. A. Casagrande, “Modeling receptive-field structure of koniocellular, magnocellular, and parvocellular LGN cells in the owl monkey (Aotus trivigatus),” Vis. Neurosci. 19, 703–711 (2002).
  40. H. Cheng, Y. M. Chino, E. L. Smith, J. Hamamoto, and K. Yoshida, “Transfer characteristics of lateral geniculate nucleus X neurons in the cat: effects of spatial frequency and contrast,” J. Neurophysiol. 74, 2548–2557 (1995).
  41. M. S. Grubb and I. D. Thompson, “Quantitative characterization of visual response properties in the mouse dorsal lateral geniculate nucleus,” J. Neurophysiol. 90, 3594–3607 (2003). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited