OSA's Digital Library

Journal of the Optical Society of America A

Journal of the Optical Society of America A

| OPTICS, IMAGE SCIENCE, AND VISION

  • Editor: Franco Gori
  • Vol. 30, Iss. 11 — Nov. 1, 2013
  • pp: 2444–2454

Link functions and Matérn kernel in the estimation of reflectance spectra from RGB responses

Ville Heikkinen, Arash Mirhashemi, and Juha Alho  »View Author Affiliations


JOSA A, Vol. 30, Issue 11, pp. 2444-2454 (2013)
http://dx.doi.org/10.1364/JOSAA.30.002444


View Full Text Article

Enhanced HTML    Acrobat PDF (484 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We evaluate three link functions (square root, logit, and copula) and Matérn kernel in the kernel-based estimation of reflectance spectra of the Munsell Matte collection in the 400–700 nm region. We estimate reflectance spectra from RGB camera responses in case of real and simulated responses and show that a combination of link function and a kernel regression model with a Matérn kernel decreases spectral errors when compared to a Gaussian mixture model or kernel regression with the Gaussian kernel. Matérn kernel produces performance similar to the thin plate spline model, but does not require a parametric polynomial part in the model.

© 2013 Optical Society of America

OCIS Codes
(100.3010) Image processing : Image reconstruction techniques
(100.3190) Image processing : Inverse problems
(150.0150) Machine vision : Machine vision
(330.1710) Vision, color, and visual optics : Color, measurement

ToC Category:
Image Processing

History
Original Manuscript: April 25, 2013
Revised Manuscript: July 25, 2013
Manuscript Accepted: October 4, 2013
Published: October 30, 2013

Virtual Issues
Vol. 9, Iss. 1 Virtual Journal for Biomedical Optics

Citation
Ville Heikkinen, Arash Mirhashemi, and Juha Alho, "Link functions and Matérn kernel in the estimation of reflectance spectra from RGB responses," J. Opt. Soc. Am. A 30, 2444-2454 (2013)
http://www.opticsinfobase.org/josaa/abstract.cfm?URI=josaa-30-11-2444


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. H. Haneishi, T. Hasegawa, A. Hosoi, Y. Yokoyama, N. Tsumura, and Y. Miyake, “System design for accurately estimating the reflectance spectra of art paintings,” Appl. Opt. 39, 6621–6632 (2000). [CrossRef]
  2. R. S. Berns, “Color-accurate image archives using spectral imaging,” in Scientific Examination of Art: Modern Techniques in Conservation and Analysis (National Academy, 2005), pp. 105–119.
  3. F. Imai, R. S. Berns, and D. Tzeng, “A comparative analysis of spectral reflectance estimation in various spaces using a trichromatic camera system,” J. Imaging Sci. Technol. 44, 280–287 (2000).
  4. V. Heikkinen, T. Jetsu, J. Parkkinen, M. Hauta-Kasari, T. Jääskeläinen, and S. D. Lee, “Regularized learning framework in the estimation of reflectance spectra from camera responses,” J. Opt. Soc. Am. A 24, 2673–2683 (2007). [CrossRef]
  5. V. Heikkinen, R. Lenz, T. Jetsu, J. Parkkinen, M. Hauta-Kasari, and T. Jääskeläinen, “Evaluation and unification of some methods for estimating reflectance spectra from RGB images,” J. Opt. Soc. Am. A 25, 2444–2458 (2008). [CrossRef]
  6. V. Heikkinen, Kernel methods for estimation and classification of data from spectral imaging, Ph.D. Thesis (School of Computing, University of Eastern Finland, 2011).
  7. J. Parkkinen, J. Hallikainen, and T. Jääskeläinen, “Characteristic spectra of Munsell colors,” J. Opt. Soc. Am. A 6, 318–322 (1989). [CrossRef]
  8. University of Eastern Finland Color Group., “Spectral Database,” http://uef.fi/spectral .
  9. C. R. Rao, Linear Statistical Inference and Its Applications, 2nd ed. (Wiley, 1973).
  10. W. K. Pratt and C. E. Mancill, “Spectral estimation techniques for the spectral calibration of color image scanner,” Appl. Opt. 15, 73–75 (1976). [CrossRef]
  11. Y. Murakami, T. Obi, M. Yamaguchi, and N. Ohyama, “Nonlinear estimation of spectral reflectance on Gaussian mixture distribution for color image reproduction,” Appl. Opt. 41, 4840–4847 (2002). [CrossRef]
  12. N. Shimano, “Recovery of spectral reflectances of objects being imaged without prior knowledge,” IEEE Trans. Image Process. 15, 1848–1856 (2006). [CrossRef]
  13. M. Yamaguchi, H. Haneishi, and N. Ohyama, “Beyond red-green-blue (RGB): spectrum-based color imaging technology,” J. Imaging Sci. Technol. 52, 10201 (2008). [CrossRef]
  14. P. Urban, M. R. Rosen, and R. S. Berns, “Spectral image reconstruction using an edge preserving spatio-spectral Wiener estimation,” J. Opt. Soc. Am. A 26, 1865–1875 (2009). [CrossRef]
  15. F. Cucker and S. Smale, “On the mathematical foundations of learning,” Bulletin of the American Mathematical Society 39, 1–49 (2002). [CrossRef]
  16. G. Wahba, Spline Models for Observational Data, SIAM CBMS-NSF Regional Conference Series in Applied Mathematics (SIAM, 1990), Vol. 59.
  17. C. E. Rasmussen and C. Williams, Gaussian Processes for Machine Learning (MIT, 2006).
  18. T. Hastie, R. Tibshirani, and J. Friedman, The Elements of Statistical Learning: Data Mining, Inference and Prediction (Springer-Verlag, 2001).
  19. J. Hernández-Andrés, J. L. Nieves, E. M. Valero, and J. Romero, “Spectral-daylight recovery by use of only a few sensors,” J. Opt. Soc. Am. A 21, 13–23 (2004). [CrossRef]
  20. E. M. Valero, Y. Hu, T. Eckhard, J. L. Nieves, J. Romero, M. Schnitzlein, and D. Nowack, “Comparative performance analysis of spectral estimation algorithms and computational optimization of a multispectral imaging system for print inspection,” Color Res. Appl. Available online (2012), http://onlinelibrary.wiley.com/doi/10.1002/col.21763/abstract .
  21. D. Attewell and B. J. Roland, “The distribution of reflectances within the visual environment,” Vision Res. 47, 548–554 (2007). [CrossRef]
  22. W.-F. Zhang and D.-Q. Dai, “Spectral reflectance estimation from camera responses by support vector regression and a composite model,” J. Opt. Soc. Am. A 25, 2286–2296 (2008). [CrossRef]
  23. J. M. Dicarlo and B. A. Wandell, “Spectral estimation theory: beyond linear but before Bayesian,” J. Opt. Soc. Am. A 20, 1261–1270 (2003). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article

OSA is a member of CrossRef.

CrossCheck Deposited