OSA's Digital Library

Journal of the Optical Society of America A

Journal of the Optical Society of America A

| OPTICS, IMAGE SCIENCE, AND VISION

  • Editor: Franco Gori
  • Vol. 30, Iss. 12 — Dec. 1, 2013
  • pp: 2466–2472

Elastomeric 2D grating and hemispherical optofluidic chamber for multifunctional fluidic sensing

Zhida Xu, Xinhao Wang, Kevin Han, Shuo Li, and G. Logan Liu  »View Author Affiliations


JOSA A, Vol. 30, Issue 12, pp. 2466-2472 (2013)
http://dx.doi.org/10.1364/JOSAA.30.002466


View Full Text Article

Enhanced HTML    Acrobat PDF (1027 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We present an optofluidic sensor based on an elastomeric two-dimensional (2D) grating integrated inside a hemispherical fluid chamber. A laser beam is diffracted before (reflection) and after (transmission) going through the grating and liquid in the dome chamber. The sensing mechanism is investigated and simulated with a finite-difference time-domain-based electromagnetic method. For the experiment, by analyzing the size, power, and shape of the 2D diffraction patterns, we can retrieve multiple parameters of the liquid, including the refractive index, pressure, and opacity with high sensitivity. We demonstrate that the glucose concentration can be monitored when mixed in a different concentrated phosphate-buffered saline solution. The free-solution binding of bovine serum albumin (BSA) and anti-BSA IgG is detected with this optical sensor. This low-cost, multifunctional, and reliable optofluidic sensor has the potential to be used as a monitor of biofluid, such as blood in hemodialysis.

© 2013 Optical Society of America

OCIS Codes
(050.1950) Diffraction and gratings : Diffraction gratings
(280.4788) Remote sensing and sensors : Optical sensing and sensors

ToC Category:
Remote Sensing and Sensors

History
Original Manuscript: July 29, 2013
Revised Manuscript: October 11, 2013
Manuscript Accepted: October 17, 2013
Published: November 8, 2013

Virtual Issues
Vol. 9, Iss. 2 Virtual Journal for Biomedical Optics

Citation
Zhida Xu, Xinhao Wang, Kevin Han, Shuo Li, and G. Logan Liu, "Elastomeric 2D grating and hemispherical optofluidic chamber for multifunctional fluidic sensing," J. Opt. Soc. Am. A 30, 2466-2472 (2013)
http://www.opticsinfobase.org/josaa/abstract.cfm?URI=josaa-30-12-2466


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. M. Misra, “The basics of hemodialysis equipment,” Hemodial. Int. 9, 30–36 (2005). [CrossRef]
  2. Y. Yeh, “Real-time measurement of glucose concentration and average refractive index using a laser interferometer,” Opt. Lasers Eng. 46, 666–670 (2008). [CrossRef]
  3. H. W. Lee, M. A. Schmidt, P. Uebel, H. Tyagi, N. Y. Joly, M. Scharrer, and P. S. J. Russell, “Optofluidic refractive-index sensor in step-index fiber with parallel hollow micro-channel,” Opt. Express 19, 8200–8207 (2011). [CrossRef]
  4. D. J. Bornhop, J. C. Latham, A. Kussrow, D. A. Markov, R. D. Jones, and H. S. Sørensen, “Free-solution, label-free molecular interactions studied by back-scattering interferometry,” Science 317, 1732–1736 (2007). [CrossRef]
  5. N. Lagali, K. Burns, D. Zimmerman, and R. Munger, “Hemodialysis monitoring in whole blood using transmission and diffuse reflection spectroscopy: a pilot study,” J. Biomed. Opt. 11, 054003 (2006). [CrossRef]
  6. E. Cibula and D. Ðonlagic, “Miniature fiber-optic pressure sensor with a polymer diaphragm,” Appl. Opt. 44, 2736–2744 (2005). [CrossRef]
  7. B. Grzybowski, D. Qin, R. Haag, and G. M. Whitesides, “Elastomeric optical elements with deformable surface topographies: applications to force measurements, tunable light transmission and light focusing,” Sens. Actuators A Phys. 86, 81–85 (2000). [CrossRef]
  8. J. A. Rogers, R. J. Jackman, O. J. A. Schueller, and G. M. Whitesides, “Elastomeric diffraction gratings as photothermal detectors,” Appl. Opt. 35, 6641–6647 (1996). [CrossRef]
  9. T. Ma, H. Liang, G. Chen, B. Poon, H. Jiang, and H. Yu, “Micro-strain sensing using wrinkled stiff thin films on soft substrates as tunable optical grating,” Opt. Express 21, 11994–12001 (2013). [CrossRef]
  10. A. Kocabas, F. Ay, A. Dana, I. Kiyat, and A. Aydinli, “High-refractive-index measurement with an elastomeric grating coupler,” Opt. Lett. 30, 3150–3152 (2005). [CrossRef]
  11. K. Hosokawa, K. Hanada, and R. Maeda, “A polydimethylsiloxane (PDMS) deformable diffraction grating for monitoring of local pressure in microfluidic devices,” J. Micromech. Microeng. 12, 1–6 (2002). [CrossRef]
  12. R. A. Guerrero, S. J. C. Oliva, and J. M. M. Indias, “Fluidic actuation of an elastomeric grating,” Appl. Opt. 51, 5812–5817 (2012). [CrossRef]
  13. D. Fourguette, E. Arik, and D. Wilson, “Optical MEMS-based sensor development with applications to microfluidics,” in BioMEMS and Biomedical Nanotechnology, M. Ferrari, R. Bashir, and S. Wereley, eds. (Springer, 2007), Chap. 17, pp. 349–370.
  14. J. L. Wilbur, R. J. Jackman, G. M. Whitesides, E. L. Cheung, L. K. Lee, and M. G. Prentiss, “Elastomeric optics,” Chem. Mater. 8, 1380–1385 (1996). [CrossRef]
  15. Z. Xu, H. Wu, S. U. Ali, J. Jiang, B. T. Cunningham, and G. L. Liu, “Nanoreplicated positive and inverted submicrometer polymer pyramid array for surface-enhanced Raman spectroscopy,” J. Nanophoton. 5, 053526 (2011). [CrossRef]
  16. D. R. Lide, Handbook of Chemistry and Physics (CRC Press, 2004).
  17. E. Coyne and G. M. O’Connor, “Fabrication of silicon-blazed phase diffractive gratings using grey scale gallium implantation with KOH anisotropic etch,” J. Micromech. Microeng. 20, 085037 (2010). [CrossRef]
  18. N. M. B. Perney, F. J. G. de Abajo, J. J. Baumberg, A. Tang, M. C. Netti, M. D. B. Charlton, and M. E. Zoorob, “Tuning localized plasmon cavities for optimized surface-enhanced Raman scattering,” Phys. Rev. B 76, 035426 (2007). [CrossRef]
  19. G. Beadie, M. L. Sandrock, M. J. Wiggins, R. S. Lepkowicz, J. S. Shirk, M. Ponting, Y. Yang, T. Kazmierczak, A. Hiltner, and E. Baer, “Tunable polymer lens,” Opt. Express 16, 11847–11857 (2008). [CrossRef]
  20. H. Ren and S. Wu, “Variable-focus liquid lens by changing aperture,” Appl. Phys. Lett. 86, 211107 (2005). [CrossRef]
  21. H. Ren, D. Fox, P. A. Anderson, B. Wu, and S. Wu, “Tunable-focus liquid lens controlled using a servo motor,” Opt. Express 14, 8031–8036 (2006). [CrossRef]
  22. Q. Zhang, T. Zhu, J. Zhang, and K. S. Chiang, “Micro-fiber-based FBG sensor for simultaneous measurement of vibration and temperature,” IEEE Photon. Technol. Lett. 25, 1751–1753 (2013). [CrossRef]
  23. C. Park, K. Joo, S. Kang, and H. Kim, “A PDMS-coated optical fiber Bragg grating sensor for enhancing temperature sensitivity,” J. Opt. Soc. Korea 15, 329–334 (2011). [CrossRef]
  24. S. Sorgenfrei, C. Chiu, R. L. Gonzalez, Y. Yu, P. Kim, C. Nuckolls, and K. L. Shepard, “Label-free single-molecule detection of DNA-hybridization kinetics with a carbon nanotube field-effect transistor,” Nat. Nanotechnol. 6, 126–132 (2011). [CrossRef]
  25. J. Hirota and S. Shimizu, “A new competitive ELISA detects West Nile virus infection using monoclonal antibodies against the precursor-membrane protein of West Nile virus,” J. Virol. Methods 188, 132–138 (2013). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited