OSA's Digital Library

Journal of the Optical Society of America A

Journal of the Optical Society of America A

| OPTICS, IMAGE SCIENCE, AND VISION

  • Editor: Franco Gori
  • Vol. 30, Iss. 12 — Dec. 1, 2013
  • pp: 2595–2604

Automated segmentation of retinal pigment epithelium cells in fluorescence adaptive optics images

Piero Rangel-Fonseca, Armando Gómez-Vieyra, Daniel Malacara-Hernández, Mario C. Wilson, David R. Williams, and Ethan A. Rossi  »View Author Affiliations


JOSA A, Vol. 30, Issue 12, pp. 2595-2604 (2013)
http://dx.doi.org/10.1364/JOSAA.30.002595


View Full Text Article

Enhanced HTML    Acrobat PDF (4690 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Adaptive optics (AO) imaging methods allow the histological characteristics of retinal cell mosaics, such as photoreceptors and retinal pigment epithelium (RPE) cells, to be studied in vivo. The high-resolution images obtained with ophthalmic AO imaging devices are rich with information that is difficult and/or tedious to quantify using manual methods. Thus, robust, automated analysis tools that can provide reproducible quantitative information about the cellular mosaics under examination are required. Automated algorithms have been developed to detect the position of individual photoreceptor cells; however, most of these methods are not well suited for characterizing the RPE mosaic. We have developed an algorithm for RPE cell segmentation and show its performance here on simulated and real fluorescence AO images of the RPE mosaic. Algorithm performance was compared to manual cell identification and yielded better than 91% correspondence. This method can be used to segment RPE cells for morphometric analysis of the RPE mosaic and speed the analysis of both healthy and diseased RPE mosaics.

© 2013 Optical Society of America

OCIS Codes
(100.2000) Image processing : Digital image processing
(100.2960) Image processing : Image analysis
(170.4460) Medical optics and biotechnology : Ophthalmic optics and devices
(330.4300) Vision, color, and visual optics : Vision system - noninvasive assessment
(100.4995) Image processing : Pattern recognition, metrics
(110.1080) Imaging systems : Active or adaptive optics

ToC Category:
Imaging Systems

History
Original Manuscript: September 5, 2013
Revised Manuscript: November 4, 2013
Manuscript Accepted: November 5, 2013
Published: November 21, 2013

Virtual Issues
Vol. 9, Iss. 2 Virtual Journal for Biomedical Optics

Citation
Piero Rangel-Fonseca, Armando Gómez-Vieyra, Daniel Malacara-Hernández, Mario C. Wilson, David R. Williams, and Ethan A. Rossi, "Automated segmentation of retinal pigment epithelium cells in fluorescence adaptive optics images," J. Opt. Soc. Am. A 30, 2595-2604 (2013)
http://www.opticsinfobase.org/josaa/abstract.cfm?URI=josaa-30-12-2595


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. J. Liang, D. R. Williams, and D. T. Miller, “Supernormal vision and high-resolution retinal imaging through adaptive optics,” J. Opt. Soc. Am. A 14, 2884–2892 (1997). [CrossRef]
  2. A. Roorda, F. Romero-Borja, I. William Donnelly, H. Queener, T. Hebert, and M. Campbell, “Adaptive optics scanning laser ophthalmoscopy,” Opt. Express 10, 405–412 (2002). [CrossRef]
  3. D. C. Gray, W. Merigan, J. I. Wolfing, B. P. Gee, J. Porter, A. Dubra, T. H. Twietmeyer, K. Ahamd, R. Tumbar, F. Reinholz, and D. R. Williams, “In vivo fluorescence imaging of primate retinal ganglion cells and retinal pigment epithelial cells,” Opt. Express 14, 7144–7158 (2006). [CrossRef]
  4. R. C. Baraas, J. Carroll, K. L. Gunther, M. Chung, D. R. Williams, D. H. Foster, and M. Neitz, “Adaptive optics retinal imaging reveals s-cone dystrophy in tritan color-vision deficiency,” J. Opt. Soc. Am. A 24, 1438–1447 (2007). [CrossRef]
  5. J. Carroll, S. S. Choi, and D. R. Williams, “In vivo imaging of the photoreceptor mosaic of a rod monochromat,” Vis. Res. 48, 2564–2568 (2008). [CrossRef]
  6. J. I. W. Morgan, A. Dubra, R. Wolfe, W. H. Merigan, and D. R. Williams, “In vivo autofluorescence imaging of the human and macaque retinal pigment epithelial cell mosaic,” Investig. Ophthalmol. Vis. Sci. 50, 1350–1359 (2008). [CrossRef]
  7. J. J. Hunter, B. Masella, A. Dubra, R. Sharma, L. Yin, W. H. Merigan, G. Palczewska, K. Palczewski, and D. R. Williams, “Images of photoreceptors in living primate eyes using adaptive optics two-photon ophthalmoscopy,” Biomed. Opt. Express 2, 139–148 (2011). [CrossRef]
  8. A. Dubra and Y. Sulai, “Reflective afocal broadband adaptive optics scanning ophthalmoscope,” Biomed. Opt. Express 2, 1757–1768 (2011). [CrossRef]
  9. E. A. Rossi, M. Chung, A. Dubra, J. J. Hunter, W. H. Merigan, and D. R. Williams, “Imaging retinal mosaics in the living eye,” Eye 25, 301–308 (2011). [CrossRef]
  10. D. R. Williams, “Imaging single cells in the living retina,” Vis. Res. 51, 1379–1396 (2011). [CrossRef]
  11. J. I. W. Morgan, J. J. Hunter, B. Masella, R. Wolfe, D. C. Gray, W. H. Merigan, F. C. Delori, and D. R. Williams, “Light-induced retinal changes observed with high-resolution autofluorescence imaging of the retinal pigment epithelium,” Investig. Ophthalmol. Vis. Sci. 49, 3715–3729 (2008). [CrossRef]
  12. D. T. Miller, D. R. Williams, G. M. Morris, and J. Liang, “Images of cone photoreceptors in the living human eye,” Vis. Res. 36, 1067–1079 (1996). [CrossRef]
  13. O. Strauss, “The retinal pigment epithelium in visual function,” Physiol. Rev. 85, 845–881 (2005). [CrossRef]
  14. D. Bok, “The retinal pigment epithelium: a versatile partner in vision,” J. Cell Sci., Suppl. 17, 189–195 (1993).
  15. P. Kay, Y. Yang, and L. Paraoan, “Directional protein secretion by the retinal pigment epithelium: roles in retinal health and the development of age-related macular degeneration,” J. Cell. Mol. Med. 17, 833–843 (2013).
  16. A. Rashid, S. K. Arora, M. A. Chrenek, S. Park, Q. Zhang, J. M. Nickerson, and H. E. Grossniklaus, “Spatial analysis of morphometry of retinal pigment epithelium in the normal human eye,” presented at ARVO 2013 Annual Meeting, Seattle, Washington, 2013.
  17. A. Roorda, Y. Zhang, and J. L. Duncan, “High-resolution in vivo imaging of the RPE mosaic in eyes with retinal disease,” Investig. Ophthalmol. Vis. Sci. 48, 2297–2303 (2007). [CrossRef]
  18. E. A. Rossi, D. R. Williams, A. Dubra, L. R. Latchney, M. A. Folwell, W. Fischer, H. Song, and M. M. Chung, “Individual retinal pigment epithelium cells can be imaged in vivo in age related macular degeneration,” presented at ARVO 2013 Annual Meeting, Seattle, Washington, 2013.
  19. C. K. Dorey, G. Wu, D. Ebenstein, A. Garsd, and J. J. Weiter, “Cell loss in the aging retina. Relationship to lipofuscin accumulation and macular degeneration,” Investig. Ophthalmol. Vis. Sci. 30, 1691–1699 (1989).
  20. E. A. Rossi, P. Rangel-Fonseca, K. Parkins, W. Fischer, L. R. Latchney, M. Folwell, D. Williams, A. Dubra, and M. M. Chung, “In vivo imaging of retinal pigment epithelium cells in age related macular degeneration,” Biomed. Opt. Express 4, 2527–2539 (2013). [CrossRef]
  21. D. Scoles, Y. N. Sulai, and A. Dubra, “In vivo dark-field imaging of the retinal pigment epithelium cell mosaic,” Biomed. Opt. Express 4, 1710–1723 (2013). [CrossRef]
  22. K. Y. Li and A. Roorda, “Automated identification of cone photoreceptors in adaptive optics retinal images,” J. Opt. Soc. Am. A 24, 1358–1363 (2007). [CrossRef]
  23. S. J. Chiu, C. A. Toth, C. B. Rickman, J. A. Izatt, and S. Farsiu, “Automatic segmentation of closed-contour features in ophthalmic images using graph theory and dynamic programming,” Biomed. Opt. Express 3, 1127–1140 (2012). [CrossRef]
  24. S. J. Chiu, Y. Lokhnygina, A. M. Dubis, A. Dubra, J. Carroll, J. A. Izatt, and S. Farsiu, “Automatic cone photoreceptor segmentation using graph theory and dynamic programming,” Biomed. Opt. Express 4, 924–937 (2013). [CrossRef]
  25. S. K. Arora, A. Rashid, M. A. Chrenek, Q. Zhang, S. Park, H. E. Grossniklaus, and J. M. Nickerson, “Analysis of human retinal pigment epithelium (RPE) morphometry in the macula of the normal aging eye,” presented at ARVO 2013 Annual Meeting, Seattle, Washington, 2013.
  26. L. V. Del Priore, Y.-H. Kuo, and T. H. Tezel, “Age-related changes in human RPE cell density and apoptosis proportion in situ,” Investig. Ophthalmol. Vis. Sci. 43, 3312–3318 (2002).
  27. M. Boulton and P. Dayhaw-Barker, “The role of the retinal pigment epithelium: topographical variation and ageing changes,” Eye 15, 384–389 (2001). [CrossRef]
  28. Y. N. Sulai and A. Dubra, “Adaptive optics scanning ophthalmoscopy with annular pupils,” Biomed. Opt. Express 3, 1647–1661 (2012). [CrossRef]
  29. N. M. Putnam, D. X. Hammer, Y. Zhang, D. Merino, and A. Roorda, “Modeling the foveal cone mosaic imaged with adaptive optics scanning laser ophthalmoscopy,” Opt. Express 18, 24902–24916 (2010). [CrossRef]
  30. M. O. M. Ts’o and E. Friedman, “The retinal pigment epithelium: I. Comparative histology,” Arch. Ophthalmol. 78, 641–649 (1967).
  31. D. M. Snodderly, M. M. Sandstrom, I. Y.-F. Leung, C. L. Zucker, and M. Neuringer, “Retinal pigment epithelial cell distribution in central retina of rhesus monkeys,” Investig. Ophthalmol. Vis. Sci. 43, 2815–2818 (2002).
  32. R. C. Gonzalez and R. E. Woods, Digital Image Processing (Addison-Wesley, 1993).
  33. J. C. Russ, The Image Processing Handbook (CRC Press, 2002).
  34. J. P. Serra, Image Analysis and Mathematical Morphology (Academic, 1982).
  35. H. Wilson and S. Giese, “Threshold visibility of frequency gradient patterns,” Vis. Res. 17, 1177–1190 (1977). [CrossRef]
  36. D. Marr and E. Hildreth, “Theory of edge detection,” Proc. R. Soc. B 207, 187–217 (1980).
  37. S. Beucher and F. Meyer, “Methodes d’analyse de contrastes a l’analyseur de textures,” Technical report (Ecole des Mines de Paris, Centre de Morphologie Mathématique Fontainebleau, 1977).
  38. L.-K. Huang and M.-J. J. Wang, “Image thresholding by minimizing the measures of fuzziness,” Pattern Recogn. 28, 41–51 (1995). [CrossRef]
  39. G. W. Zack, W. E. Rogers, and S. A. Latt, “Automatic measurement of sister chromatid exchange frequency,” J. Histochem. Cytochem. 25, 741–753 (1977). [CrossRef]
  40. N. Otsu, “A threshold selection method from gray-level histograms,” IEEE Trans. Syst. Man Cybern. 9, 62–66 (1979). [CrossRef]
  41. J. C. Valencia-Estrada and A. H. Bedoya-Calle, “Trigonometría elíptica para su uso en ingeniería,” in Jornadas de Investigación EIA 2009 (Escuela de Ingeniería de Antioquia, 2009), pp. 84–92.
  42. J. M. Bland and D. G. Altman, “Statistical methods for assessing agreement between two methods of clinical measurement,” Lancet 327, 307–310 (1986). [CrossRef]
  43. J. I. W. Morgan, Department of Ophthalmology, University of Pennsylvania, 3400 Civic Center Blvd., Ophthalmology 3rd floor WEST 3–113W, Philadelphia, Pennsylvania 19104–6100 (personal communication, 2013).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited