OSA's Digital Library

Journal of the Optical Society of America A

Journal of the Optical Society of America A


  • Editor: Franco Gori
  • Vol. 30, Iss. 2 — Feb. 1, 2013
  • pp: 238–251

How complicated must an optical component be?

David A. B. Miller  »View Author Affiliations

JOSA A, Vol. 30, Issue 2, pp. 238-251 (2013)

View Full Text Article

Enhanced HTML    Acrobat PDF (471 KB) Open Access

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We analyze how complicated a linear optical component has to be if it is to perform one of a range of functions. Specifically, we devise an approach to evaluating the number of real parameters that must be specified in the device design or fabrication, based on the singular value decomposition of the linear operator that describes the device. This approach can be used for essentially any linear device, including space-, frequency-, or time-dependent systems, in optics, or in other linear wave problems. We analyze examples including spatial mode converters and various classes of wavelength demultiplexers. We consider limits on the functions that can be performed by simple optical devices, such as thin lenses, mirrors, gratings, modulators, and fixed optical filters, and discuss the potential for greater functionalities using modern nanophotonics.

© 2013 Optical Society of America

OCIS Codes
(030.4070) Coherence and statistical optics : Modes
(060.1810) Fiber optics and optical communications : Buffers, couplers, routers, switches, and multiplexers
(070.6110) Fourier optics and signal processing : Spatial filtering
(080.2720) Geometric optics : Mathematical methods (general)
(230.0230) Optical devices : Optical devices
(350.4238) Other areas of optics : Nanophotonics and photonic crystals

ToC Category:
Optical Devices

Original Manuscript: September 24, 2012
Manuscript Accepted: December 28, 2012
Published: January 31, 2013

David A. B. Miller, "How complicated must an optical component be?," J. Opt. Soc. Am. A 30, 238-251 (2013)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. J. D. Joannopoulos, P. R. Villeneuve, and S. H. Fan, “Photonic crystals: putting a new twist on light,” Nature 386, 143–149 (1997). [CrossRef]
  2. V. M. Shalaev, “Optical negative-index metamaterials,” Nat. Photonics 1, 41–48 (2007). [CrossRef]
  3. N. I. Zheludev, “The road ahead for metamaterials,” Science 328, 582–583 (2010). [CrossRef]
  4. H. Chen, C. T. Chan, and P. Sheng, “Transformation optics and metamaterials,” Nat. Mater. 9, 387–396 (2010). [CrossRef]
  5. M. L. Brongersma and V. M. Shalaev, “The case for plasmonics,” Science 328, 440–441 (2010). [CrossRef]
  6. L. Tang, S. E. Kocabas, S. Latif, A. K. Okyay, D.-S. Ly-Gagnon, K. C. Saraswat, and D. A. B. Miller, “Nanometre-scale germanium photodetector enhanced by a near-infrared dipole antenna,” Nat. Photonics 2, 226–229 (2008). [CrossRef]
  7. L. Novotny and N. van Hulst, “Antennas for light,” Nat. Photonics 5, 83–90 (2011). [CrossRef]
  8. N.-N. Feng, M. L. Brongersma, and L. Dal Negro, “Metal-dielectric slot-waveguide structures for the propagation of surface plasmon polaritons at 1.55 μm,” IEEE J. Quantum Electron. 43, 479–485 (2007). [CrossRef]
  9. J. A. Dionne, L. A. Sweatlock, H. A. Atwater, and A. Polman, “Plasmon slot waveguides: towards chip-scale propagation with subwavelength-scale localization,” Phys. Rev. B 73, 035407 (2006). [CrossRef]
  10. G. Veronis and S. H. Fan, “Modes of subwavelength plasmonic slot waveguides,” J. Lightwave Technol. 25, 2511–2521 (2007). [CrossRef]
  11. D.-S. Ly-Gagnon, K. C. Balram, J. S. White, P. Wahl, M. L. Brongersma, and D. A. B. Miller, “Routing and photodetection in subwavelength plasmonic slot waveguides,” Nanophotonics 1, 9–16 (2012). [CrossRef]
  12. M. Gerken and D. A. B. Miller, “Multilayer thin-film structures with high spatial dispersion,” Appl. Opt. 42, 1330–1345 (2003). [CrossRef]
  13. M. Gerken and D. A. B. Miller, “Limits to the performance of dispersive thin-film stacks,” Appl. Opt. 44, 3349–3357 (2005). [CrossRef]
  14. Y. Jiao, S. H. Fan, and D. A. B. Miller, “Demonstration of systematic photonic crystal device design and optimization By low rank adjustments: an extremely compact mode separator,” Opt. Lett. 30, 141–143 (2005). [CrossRef]
  15. V. Liu, Y. Jiao, D. A. B. Miller, and S. Fan, “Design methodology for compact photonic-crystal-based wavelength division multiplexers,” Opt. Lett. 36, 591–593 (2011). [CrossRef]
  16. M. P. J. Lavery, A. Dudley, A. Forbes, J. Courtial, and M. J. Padgett, “Robust interferometer for the routing of light beams carrying orbital angular momentum,” New J. Phys. 13, 093014 (2011). [CrossRef]
  17. T. Su, R. P. Scott, S. S. Djordjevic, N. K. Fontaine, D. J. Geisler, X. Cai, and S. J. B. Yoo, “Demonstration of free space coherent optical communication using integrated silicon photonic orbital angular momentum devices,” Opt. Express 20, 9396–9402 (2012). [CrossRef]
  18. B. Zhu, T. F. Taunay, M. Fishteyn, X. Liu, S. Chandrasekhar, M. F. Yan, J. M. Fini, E. M. Monberg, and F. V. Dimarcello, “112  Tb/s space-division multiplexed DWDM transmission with 14  b/s/Hz aggregate spectral efficiency over a 76.8 km seven-core fiber,” Opt. Express 19, 16665–16671 (2011). [CrossRef]
  19. E. Ip, P. Ji, E. Mateo, Y.-K. Huang, L. Xu, D. Qian, N. Bai, and T. Wang, “100 G and beyond transmission technologies for evolving optical networks and relevant physical-layer issues,” Proc. IEEE 100, 1065–1078 (2012). [CrossRef]
  20. R. Ryf, S. Randel, A. H. Gnauck, C. Bolle, A. Sierra, S. Mumtaz, M. Esmaeelpour, E. C. Burrows, R.-J. Essiambre, P. J. Winzer, D. W. Peckham, A. H. McCurdy, and R. Lingle, “Mode-division multiplexing over 96 km of few-mode fiber using coherent 6×6 MIMO processing,” J. Lightwave Technol. 30, 521–531 (2012). [CrossRef]
  21. P. M. Krummrich, “Optical amplification and optical filter based signal processing for cost and energy efficient spatial multiplexing,” Opt. Express 19, 16636–16652 (2011). [CrossRef]
  22. D. A. B. Miller, “Device requirements for optical interconnects to silicon chips,” Proc. IEEE 97, 1166–1185 (2009). [CrossRef]
  23. R. Chen, H. Chin, D. A. B. Miller, K. Ma, and J. S. Harris, “MSM-based integrated CMOS wavelength-tunable optical receiver,” IEEE Photon. Technol. Lett. 17, 1271–1273 (2005). [CrossRef]
  24. R. Chen, J. Fu, D. A. B. Miller, and J. S. Harris, “Design and analysis of CMOS-controlled tunable photodetectors for multiwavelength discrimination,” J. Lightwave Technol. 27, 5451–5460 (2009). [CrossRef]
  25. Z. Yu and S. H. Fan, “Integrated nonmagnetic optical isolators based on photonic transitions,” IEEE J. Sel. Top. Quantum Electron. 16, 459–466 (2010). [CrossRef]
  26. W. L. Barnes, A. Dereux, and T. W. Ebbesen, “Surface plasmon subwavelength optics,” Nature 424, 824–830 (2003). [CrossRef]
  27. P. J. Schuck, D. P. Fromm, A. Sundaramurthy, G. S. Kino, and W. E. Moerner, “Improving the mismatch between light and nanoscale objects with gold bowtie nanoantennas,” Phys. Rev. Lett. 94, 017402 (2005). [CrossRef]
  28. D. A. B. Miller, “Fundamental limit for optical components,” J. Opt. Soc. Am. B 24, A1–A18 (2007). [CrossRef]
  29. D. A. B. Miller, “Fundamental limit to linear one-dimensional slow light structures,” Phys. Rev. Lett. 99, 203903 (2007). [CrossRef]
  30. D. A. B. Miller, “Self-aligning universal beam coupler,” Opt. Express (to be published).
  31. D. A. B. Miller, “Self-configuring universal linear optical component,” Photon. Res. (to be published).
  32. D. A. B. Miller, “All linear optical devices are mode converters,” Opt. Express 20, 23985–23993 (2012). [CrossRef]
  33. R. S. Tucker, P.-C. Ku, and C. J. Chang-Hasnain, “Slow-light optical buffers: capabilities and fundamental limitations,” J. Lightwave Technol. 23, 4046–4066 (2005). [CrossRef]
  34. M. Gerken and D. A. B. Miller, “The relationship between the superprism effect in one-dimensional photonic crystals and spatial dispersion in nonperiodic thin-film stacks,” Opt. Lett. 30, 2475–2477 (2005). [CrossRef]
  35. R. Zengerle, “Light propagation in singly and doubly periodic planar waveguides,” J. Modern Opt. 34, 1589–1617 (1987). [CrossRef]
  36. H. Kosaka, T. Kawashima, K. Tomita, M. Notomi, T. Tamamura, T. Sato, and S. Kawakami, “Superprism phenomena in photonic crystals,” Phys. Rev. B 58, R10096 (1998). [CrossRef]
  37. B. Momeni and A. Abidi, “Systematic design of superprism-based photonic crystal demultiplexers,” IEEE J. Sel. Areas Commun. 23, 1355–1364 (2005). [CrossRef]
  38. M. Georgas, J. Leu, B. Moss, C. Sun, and V. Stojanovic, “Addressing link-level design tradeoffs for integrated photonics interconnects,” in Proceedings of Custom Integrated Circuits Conference (CICC) (IEEE, 2011), pp. 1–8.
  39. D. A. B. Miller, Quantum Mechanics for Scientists and Engineers (Cambridge University, 2008).
  40. G. A. Rakuljic, V. Leyva, and A. Yariv, “Optical data storage by using orthogonal wavelength-multiplexed volume holograms,” Opt. Lett. 17, 1471–1473 (1992). [CrossRef]
  41. L. Hesselink, S. S. Orlov, and M. C. Bashaw, “Holographic data storage systems,” Proc. IEEE 92, 1231–1280 (2004). [CrossRef]
  42. T. Tanemura, K. C. Balram, D.-S. Ly-Gagnon, P. Wahl, J. S. White, M. L. Brongersma, and D. A. B. Miller, “Multiple-wavelength focusing of surface plasmons with a nonperiodic nanoslit coupler,” Nano Lett. 11, 2693–2698 (2011). [CrossRef]
  43. J. W. Goodman, Introduction to Fourier Optics, 3rd ed.(Roberts & Co., 2005).
  44. H. Dammann and K. Gortler, “High-efficiency in-line multiple imaging by means of multiple phase holograms,” Opt. Commun. 3, 312–315 (1971). [CrossRef]
  45. J. R. Leger, G. J. Swanson, and W. B. Veldkamp, “Coherent laser addition using binary phase gratings,” Appl. Opt. 26, 4391–4399 (1987). [CrossRef]
  46. A. M. Weiner, “Femtosecond pulse shaping using spatial light modulators,” Rev. Sci. Instrum. 71, 1929–1960 (2000). [CrossRef]
  47. B. E. Little, J. S. Foresi, G. Steinmeyer, E. R. Thoen, S. T. Chu, H. A. Haus, E. P. Ippen, L. C. Kimerling, and W. Greene, “Ultra-compact Si-SiO2 microring resonator optical channel dropping filters,” IEEE Photon. Technol. Lett. 10, 549–551 (1998). [CrossRef]
  48. T. Tanemura, University of Tokyo, Information Devices Laboratory, 4-6-1 Komaba, Meguro-ku, Tokyo, Japan (personal communication, 2012).
  49. D. A. B. Miller, “Communicating with waves between volumes—evaluating orthogonal spatial channels and limits on coupling strengths,” Appl. Opt. 39, 1681–1699 (2000). [CrossRef]
  50. R. Piestun and D. A. B. Miller, “Electromagnetic degrees of freedom of an optical system,” J. Opt. Soc. Am. A 17, 892–902 (2000). [CrossRef]
  51. R. Piestun and J. Shamir, “Synthesis of three-dimensional light fields and applications,” Proc. IEEE 90, 222–244 (2002). [CrossRef]
  52. A. Thaning, P. Martinsson, M. Karelin, and A. T. Friberg, “Limits of diffractive optics by communication modes,” J. Opt. A 5, 153–158 (2003). [CrossRef]
  53. A. Burvall, P. Martinsson, and A. T. Friberg, “Communication modes in large-aperture approximation,” Opt. Lett. 32, 611–613 (2007). [CrossRef]
  54. M. A. Jensen and J. W. Wallace, “Capacity of the continuous-space electromagnetic channel,” IEEE Trans. Antennas Propag. 56, 524–531 (2008). [CrossRef]
  55. R. Somaraju and J. Trumpf, “Degrees of freedom of a communication channel: using DOF singular values,” IEEE Trans. Inf. Theory 56, 1560–1573 (2010). [CrossRef]
  56. R. L. Konsbruck, E. Telatar, and M. Vetterli, “On sampling and coding for distributed acoustic sensing,” IEEE Trans. Inf. Theory 58, 3198–3214 (2012). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited