OSA's Digital Library

Journal of the Optical Society of America A

Journal of the Optical Society of America A

| OPTICS, IMAGE SCIENCE, AND VISION

  • Editor: Franco Gori
  • Vol. 30, Iss. 3 — Mar. 1, 2013
  • pp: 367–379

Sparse ptychographical coherent diffractive imaging from noisy measurements

Vladimir Katkovnik and Jaakko Astola  »View Author Affiliations


JOSA A, Vol. 30, Issue 3, pp. 367-379 (2013)
http://dx.doi.org/10.1364/JOSAA.30.000367


View Full Text Article

Enhanced HTML    Acrobat PDF (748 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Ptychography is a lensless coherent diffractive imaging that uses intensity measurements of multiple diffraction patterns collected with a localized illumination probe from overlapping regions of an object. An iterative algorithm is proposed that is targeted on optimal processing noisy measurements. The noise suppression is enabled by two instruments: first, the maximum-likelihood technique formulated for Poissonian (photon-counting) measurements, and, second, sparse approximation of the phase and magnitude of the object and probe. It is shown that the maximum-likelihood estimate of the wavefield at the sensor plane for noisy measurements is essentially different from the famous Gerchberg–Saxton–Fienup solution, where the magnitude of the estimate is replaced by the square root of the intensity measurement. The simulation experiments demonstrate the state-of-the-art performance of the proposed algorithm both numerically and visually.

© 2013 Optical Society of America

OCIS Codes
(100.2000) Image processing : Digital image processing
(100.3010) Image processing : Image reconstruction techniques
(100.3190) Image processing : Inverse problems
(070.2025) Fourier optics and signal processing : Discrete optical signal processing

ToC Category:
Image Processing

History
Original Manuscript: September 25, 2012
Revised Manuscript: November 18, 2012
Manuscript Accepted: November 26, 2012
Published: February 12, 2013

Citation
Vladimir Katkovnik and Jaakko Astola, "Sparse ptychographical coherent diffractive imaging from noisy measurements," J. Opt. Soc. Am. A 30, 367-379 (2013)
http://www.opticsinfobase.org/josaa/abstract.cfm?URI=josaa-30-3-367


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. W. Hoppe, “Trace structure analysis, ptychography, phase tomography,” Ultramicroscopy 10, 187–198 (1982). [CrossRef]
  2. J. M. Rodenburg, “Ptychography and related diffractive imaging methods,” in Advances in Imaging and Electron Physics, P. W. Hawkes, ed. (Elsevier, 2008), pp. 87–184.
  3. J. M. Rodenburg, A. C. Hurst, A. G. Cullis, B. R. Dobson, F. Pfeiffer, O. Bunk, C. David, K. Jefimovs, and I. Johnson, “Hard-x-ray lensless imaging of extended objects,” Phys. Rev. Lett. 98, 034801 (2007). [CrossRef]
  4. M. Dierolf, A. Menzel, P. Thibault, P. Schneider, C. M. Kewish, R. Wepf, O. Bunk, and F. Pfeiffer, “Ptychographic x-ray computed tomography at the nanoscale,” Nature 467, 436–439 (2010). [CrossRef]
  5. F. Hüe, J. M. Rodenburg, A. M. Maiden, F. Sweeney, and P. A. Midgley, “Wave-front phase retrieval in transmission electron microscopy via ptychography,” Phys. Rev. B 82, 121415 (2010). [CrossRef]
  6. J. M. Rodenburg, A. C. Hurst, and A. G. Cullis, “Transmission microscopy without lenses for objects of unlimited size,” Ultramicroscopy 107, 227–231 (2007). [CrossRef]
  7. A. Schropp, P. Boye, A. Goldschmidt, S. Hönig, R. Hoppe, J. Patommel, C. Rakete, D. Samberg, S. Stephan, S. Schöder, M. Burghammer, and C. G. Schroer, “Non-destructive and quantitative imaging of a nano-structured microchip by ptychographic hard x-ray scanning microscopy,” J. Microsc. 241, 9–12 (2011). [CrossRef]
  8. J. M. Rodenburg and H. M. L. Faulkner, “A phase retrieval algorithm for shifting illumination,” Appl. Phys. Lett. 85, 4795–4797 (2004). [CrossRef]
  9. A. M. Maiden and J. M. Rodenburg, “An improved ptychographical phase retrieval algorithm for diffractive imaging,” Ultramicroscopy 109, 1256–1262 (2009). [CrossRef]
  10. P. Thibault, M. Dierolf, O. Bunk, A. Menzel, and F. Pfeiffer, “Probe retrieval in ptychographic coherent diffractive imaging,” Ultramicroscopy 109, 338–343 (2009). [CrossRef]
  11. A. M. Maiden, M. J. Humphry, F. Zhang, and J. M. Rodenburg, “Superresolution imaging via ptychography,” J. Opt. Soc. Am. A 28, 604–612 (2011). [CrossRef]
  12. R. W. Gerchberg and W. O. Saxton, “A practical algorithm for the determination of the phase from image and diffraction plane pictures,” Optik 35, 237–246 (1972).
  13. R. W. Gerchberg, “Super-resolution through error energy reduction,” Opt. Acta 21, 709–720 (1974). [CrossRef]
  14. J. Fienup, “Reconstruction of an object from the modulus of its Fourier transform,” Opt. Lett. 3, 27–29 (1978). [CrossRef]
  15. J. R. Fienup, “Phase retrieval algorithms: a comparison,” Appl. Opt. 21, 2758–2769 (1982). [CrossRef]
  16. V. Elser, “Phase retrieval by iterated projections,” J. Opt. Soc. Am. A 20, 40–55 (2003). [CrossRef]
  17. Y. Censor, N. Cohen, T. Kotzer, and J. Shamir, “Summed squared distance error reduction by simultaneous multiprojections and applications,” Appl. Math. Comput. 126, 157–179 (2002). [CrossRef]
  18. S. Marchesini, “A unified evaluation of iterative projection algorithms for phase retrieval,” Rev. Sci. Instrum. 78, 011301 (2007). [CrossRef]
  19. P. Thibault and M. Guizar-Sicairos, “Maximum-likelihood refinement for coherent diffractive imaging,” New J. Phys. 14, 063004 (2012). [CrossRef]
  20. V. Katkovnik and J. Astola, “High-accuracy wavefield reconstruction: decoupled inverse imaging with sparse modeling of phase and amplitude,” J. Opt. Soc. Am. A 29, 44–54 (2012). [CrossRef]
  21. V. Katkovnik and J. Astola, “Phase retrieval via spatial light modulator phase modulation in 4f optical setup: numerical inverse imaging with sparse regularization for phase and amplitude,” J. Opt. Soc. Am. A 29, 105–116 (2012). [CrossRef]
  22. M. Elad, Sparse and Redundant Representations: from Theory to Applications in Signal and Image Processing (Springer, 2010).
  23. K. Dabov, A. Foi, V. Katkovnik, and K. Egiazarian, “Image denoising by sparse 3D transform-domain collaborative filtering,” IEEE Trans. Image Process. 16, 2080–2095 (2007). [CrossRef]
  24. A. Danielyan, V. Katkovnik, and K. Egiazarian, “BM3D frames and variational image deblurring,” IEEE Trans. Image Process. 21, 1715–1728 (2012). [CrossRef]
  25. E. J. Candes, J. Romberg, and T. Tao, “Robust uncertainty principles: exact signal reconstruction from highly incomplete frequency information,” IEEE Trans. Inf. Theory 52, 489–509 (2006). [CrossRef]
  26. D. L. Donoho, “Compressed sensing,” IEEE Trans. Inf. Theory 52, 1289–1306 (2006). [CrossRef]
  27. F. Facchinei and C. Kanzow, “Generalized Nash equilibrium problems,” Quart. J. Oper. Res. 5, 173–210 (2007). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited