OSA's Digital Library

Journal of the Optical Society of America A

Journal of the Optical Society of America A

| OPTICS, IMAGE SCIENCE, AND VISION

  • Editor: Franco Gori
  • Vol. 30, Iss. 4 — Apr. 1, 2013
  • pp: 560–564

Second modified localized approximation for use in generalized Lorenz–Mie theory and other theories revisited

Gérard Gouesbet  »View Author Affiliations


JOSA A, Vol. 30, Issue 4, pp. 560-564 (2013)
http://dx.doi.org/10.1364/JOSAA.30.000560


View Full Text Article

Enhanced HTML    Acrobat PDF (122 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Arbitrary electromagnetic shaped beams may be described by using expansions over a set of basis functions, with expansion coefficients containing subcoefficients named “beam shape coefficients” (BSCs). When BSCs cannot be obtained in closed form, and/or when the beam description does not exactly satisfy Maxwell’s equations, the most efficient method to evaluate the BSCs is to rely on localized approximations. One of them, named the second modified localized approximation, has been presented in a way that may be found ambiguous in some cases. The aim of the present paper is to remove any ambiguity on the use of the second modified localized approximation.

© 2013 Optical Society of America

OCIS Codes
(120.4640) Instrumentation, measurement, and metrology : Optical instruments
(290.5825) Scattering : Scattering theory

ToC Category:
Scattering

History
Original Manuscript: January 3, 2013
Revised Manuscript: January 26, 2013
Manuscript Accepted: January 29, 2013
Published: March 4, 2013

Citation
Gérard Gouesbet, "Second modified localized approximation for use in generalized Lorenz–Mie theory and other theories revisited," J. Opt. Soc. Am. A 30, 560-564 (2013)
http://www.opticsinfobase.org/josaa/abstract.cfm?URI=josaa-30-4-560


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. G. Gouesbet, B. Maheu, and G. Gréhan, “Light scattering from a sphere arbitrarily located in a Gaussian beam, using a Bromwich formulation,” J. Opt. Soc. Am. A 5, 1427–1443(1988). [CrossRef]
  2. G. Gouesbet and G. Gréhan, Generalized Lorenz–Mie Theories (Springer-Verlag, 2011).
  3. G. Gouesbet, “Generalized Lorenz–Mie theories, the third decade: a perspective,” [Invited Review Paper] J. Quant. Spectrosc. Radiat. Transfer 110, 1223–1238 (2009). [CrossRef]
  4. G. Gouesbet, F. Xu, and Y. P. Han, “Expanded description of electromagnetic arbitrary shaped beam in spheroidal coordinates for use in light scattering theories: a review,” J. Quant. Spectrosc. Radiat. Transfer 112, 2249–2267 (2011). [CrossRef]
  5. G. Gouesbet and J. A. Lock, “A list of problems for future research in generalized Lorenz–Mie theories and related topics, review and prospectus,” [Commemorative Invited Review for the 50th Anniversary of Applied Optics] Appl. Opt. 52, 897–916 (2013). [CrossRef]
  6. L. W. Davis, “Theory of electromagnetic beams,” Phys. Rev. 19, 1177–1179 (1979). [CrossRef]
  7. J. P. Barton and D. R. Alexander, “Fifth-order corrected electromagnetic field components for fundamental Gaussian beams,” J. Appl. Phys. 66, 2800–2802 (1989). [CrossRef]
  8. G. Gouesbet, J. A. Lock, and G. Gréhan, “Partial wave representations of laser beams for use in light scattering calculations,” Appl. Opt. 34, 2133–2143 (1995). [CrossRef]
  9. G. Gouesbet, G. Gréhan, and B. Maheu, “A localized approximation to compute all the coefficients gnm in the generalized Lorenz–Mie theory,” J. Opt. Soc. Am. A 7, 998–1007 (1990). [CrossRef]
  10. J. A. Lock and G. Gouesbet, “Rigorous justification of the localized approximation to the beam shape coefficients in generalized Lorenz–Mie theory. I. On-axis beams,” J. Opt. Soc. Am. A 11, 2503–2515 (1994). [CrossRef]
  11. G. Gouesbet and J. A. Lock, “Rigorous justification of the localized approximation to the beam shape coefficients in generalized Lorenz–Mie theory. II. Off-axis beams,” J. Opt. Soc. Am. A 11, 2503–2515 (1994). [CrossRef]
  12. G. Gouesbet, “Validity of the localized approximation for arbitrary shaped beams in generalized Lorenz–Mie theory for spheres,” J. Opt. Soc. Am. A 16, 1641–1650 (1999). [CrossRef]
  13. K. F. Ren, G. Gouesbet, and G. Gréhan, “Integral localized approximation in generalized Lorenz–Mie theory,” Appl. Opt. 37, 4218–4225 (1998). [CrossRef]
  14. G. Gouesbet, J. A. Lock, and G. Gréhan, “Generalized Lorenz–Mie theories and description of electromagnetic arbitrary shaped beams: localized approximations and localized beam models, a review,” J. Quant. Spectrosc. Radiat. Transfer 112, 1–27 (2011). [CrossRef]
  15. G. Gouesbet, “Exact description of arbitrary shaped beams for use in light scattering theories,” J. Opt. Soc. Am. A 13, 2434–2440 (1996). [CrossRef]
  16. J. J. Wang and G. Gouesbet, “Note on the use of localized beam models for light scattering theories in spherical coordinates,” Appl. Opt. 51, 3832–3836 (2012). [CrossRef]
  17. G. Gouesbet, J. A. Lock, J. J. Wang, and G. Gréhan, “Transformations of spherical beam shape coefficients in generalized Lorenz–Mie theories through rotations of coordinate system. V. Localized beam models,” Opt. Commun. 284, 411–417 (2011). [CrossRef]
  18. G. Gouesbet, “Reconstruction of the vector fields of continuous dynamical systems from numerical scalar time series,” Phys. Rev. A 43, 5321–5331 (1991). [CrossRef]
  19. G. Gouesbet, S. Meunier-Guttin-Cluzel, and O. Ménard, eds., Chaos and Its Reconstruction (Novascience, 2003).
  20. K. F. Ren, G. Gréhan, and G. Gouesbet, “Evaluation of laser sheet beam shape coefficients in generalized Lorenz–Mie theory by using a localized approximation,” J. Opt. Soc. Am. A 11, 2072–2079 (1994). [CrossRef]
  21. F. Corbin, G. Gréhan, and G. Gouesbet, “Top-hat beam technique: improvements and application to bubble measurements,” Part. Part. Syst. Charact. 8, 222–228 (1991). [CrossRef]
  22. P. L. Marston, “Quasi-Gaussian Bessel-beam superposition: application to the scattering of focused waves by spheres,” J. Acoust. Soc. Am. 129, 1773–1782 (2011). [CrossRef]
  23. L. A. Ambrosio and H. E. Hernandez-Figueroa, “Radiation pressure cross sections and optical forces over negative refractive index spherical particles by ordinary Bessel beams,” Appl. Opt. 50, 4489–4498 (2011). [CrossRef]
  24. L. A. Ambrosio and H. E. Hernandez-Figueroa, “Integral localized approximation description of ordinary Bessel beams and application to optical trapping forces,” Biomed. Opt. Express 2, 1893–1906 (2011). [CrossRef]
  25. J. A. Lock, “Improved Gaussian beam-scattering algorithm,” Appl. Opt. 34, 559–570 (1995). [CrossRef]
  26. J. A. Lock, “Contribution of high-order rainbows to the scattering of a Gaussian laser beam by a spherical particle,” J. Opt. Soc. Am. A 10, 693–706 (1993). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited