OSA's Digital Library

Journal of the Optical Society of America A

Journal of the Optical Society of America A

| OPTICS, IMAGE SCIENCE, AND VISION

  • Editor: Franco Gori
  • Vol. 30, Iss. 4 — Apr. 1, 2013
  • pp: 627–630

Ultrashort pulse coherence properties in coherent linear amplifiers

Laleh Mokhtarpour and Sergey A. Ponomarenko  »View Author Affiliations


JOSA A, Vol. 30, Issue 4, pp. 627-630 (2013)
http://dx.doi.org/10.1364/JOSAA.30.000627


View Full Text Article

Enhanced HTML    Acrobat PDF (317 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We examine coherence properties of small-area, intrinsically stationary statistical pulses propagating in amplifying media in the vicinity of an optical resonance. Any such medium acts as a coherent linear amplifier, amplifying and reshaping the pulse. We show that an initially nearly incoherent Gaussian Schell-model pulse becomes almost fully coherent and its state of coherence becomes nearly uniform across the temporal profile as the pulse propagates into the amplifying medium.

© 2013 Optical Society of America

OCIS Codes
(030.0030) Coherence and statistical optics : Coherence and statistical optics
(320.0320) Ultrafast optics : Ultrafast optics
(320.5550) Ultrafast optics : Pulses

ToC Category:
Ultrafast Optics

History
Original Manuscript: January 15, 2013
Revised Manuscript: February 7, 2013
Manuscript Accepted: February 11, 2013
Published: March 11, 2013

Citation
Laleh Mokhtarpour and Sergey A. Ponomarenko, "Ultrashort pulse coherence properties in coherent linear amplifiers," J. Opt. Soc. Am. A 30, 627-630 (2013)
http://www.opticsinfobase.org/josaa/abstract.cfm?URI=josaa-30-4-627


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. G. P. Agrawal, Fiber-Optic Communication Systems, 3rd ed. (Wiley, 2002).
  2. P. Paakkonen, J. Turunen, P. Vahimaa, A. T. Friberg, and F. Wyrowski, “Partially coherent Gaussian pulses,” Opt. Commun. 204, 53–58 (2002). [CrossRef]
  3. H. Lajunen, J. Tervo, J. Turunen, P. Vahimaa, and F. Wyrowski, “Spectral coherence properties of temporarily modulated stationary light sources,” Opt. Express 11, 1894–1899 (2003). [CrossRef]
  4. V. Torres-Company, H. Lajunen, and A. T. Friberg, “Coherence theory of noise in ultrashort pulse trains,” J. Opt. Soc. Am. B 24, 1441–1450 (2007). [CrossRef]
  5. C. R. Fernandez-Pousa, “Intensity spectra after first-order dispersion of composite models of scalar, cyclostationary light,” J. Opt. Soc. Am. A 26, 993–1007 (2009). [CrossRef]
  6. S. A. Ponomarenko, G. P. Agrawal, and E. Wolf, “Energy spectrum of a nonstationary ensemble of pulses,” Opt. Lett. 29, 394–396 (2004). [CrossRef]
  7. B. Davis, “Measurable coherence theory for statistically periodic fields,” Phys. Rev. A 76, 043843 (2007). [CrossRef]
  8. R. W. Schoonover, B. J. Davis, and P. S. Carney, “The generalized Wolf shift for cyclostationary fields,” Opt. Express 17, 4705–4711 (2009). [CrossRef]
  9. R. W. Schoonover, B. J. Davis, R. A. Bartels, and P. S. Carney, “Propagation of spatial coherence in fast pulses,” J. Opt. Soc. Am. A 26, 1945–1953 (2009). [CrossRef]
  10. R. W. Schoonover, R. Lavarello, M. L. Oezle, and P. S. Carney, “Observation of generalised Wolf shifts in short pulse spectroscopy,” Appl. Phys. Lett. 98, 251107 (2011). [CrossRef]
  11. P. Vahimaa and J. Turunen, “Independent-elementary-pulse representation for non-stationary fields,” Opt. Express 14, 5007–5012 (2006). [CrossRef]
  12. A. T. Friberg, H. Lajunen, and V. Torres-Company, “Spectral elementary-coherence-function representation for partially coherent light pulses,” Opt. Express 15, 5160–5165 (2007). [CrossRef]
  13. S. A. Ponomarenko, “Complex Gaussian representation of statistical pulses,” Opt. Express 19, 17086–17091 (2011). [CrossRef]
  14. W. Huang, S. A. Ponomarenko, M. Cada, and G. P. Agrawal, “Polarization changes of partially coherent pulses propagating in optical fibers,” J. Opt. Soc. Am. A 24, 3063–3068 (2007). [CrossRef]
  15. C. L. Ding, L. Z. Pan, and B. D. Lu, “Changes in the spectral degree of polarization of stochastic spatially and spectrally partially coherent electromagnetic pulses in dispersive media,” J. Opt. Soc. Am. B 26, 1728–1735 (2009). [CrossRef]
  16. Q. Lin, L. Wang, and S. Zhu, “Partially coherent light pulse and its propagation,” Opt. Commun. 219, 65–70 (2003). [CrossRef]
  17. M. Brunel and S. Coëtmellec, “Fractional-order Fourier formulation of the propagation of partially coherent light pulses,” Opt. Commun. 230, 1–5 (2004). [CrossRef]
  18. S. A. Ponomarenko, “Degree of phase-space separability of statistical pulses,” Opt. Express 20, 2548–2555 (2012). [CrossRef]
  19. H. Lajunen, V. Torres-Company, J. Lancis, E. Silvestre, and P. Andrés, “Pulse-by-pulse method to characterize partially coherent pulse propagation in instantaneous nonlinear media,” Opt. Express 18, 14979–14991 (2010). [CrossRef]
  20. S. Haghgoo and S. A. Ponomarenko, “Self-similar pulses in coherent linear amplifiers,” Opt. Express 19, 9750–9758 (2011). [CrossRef]
  21. S. Haghgoo and S. A. Ponomarenko, “Shape-invariant pulses in resonant linear absorbers,” Opt. Lett. 37, 1328–1330(2012). [CrossRef]
  22. L. Mokhtarpour, G. H. Akter, and S. A. Ponomarenko, “Partially coherent self-similar pulses in resonant linear absorbers,” Opt. Express 20, 17816–17822 (2012). [CrossRef]
  23. L. Mokhtarpour and S. A. Ponomarenko, “Complex area correlation theorem for statistical pulses in coherent linear absorbers,” Opt. Lett. 37, 3498–3500 (2012). [CrossRef]
  24. L. Allen and J. H. Eberly, Optical Resonance and Two-Level Atoms (Dover, 1975).
  25. L. Mandel and E. Wolf, Optical Coherence and Quantum Optics (Cambridge University, 1995).
  26. H. Lajunen, J. Tervo, and P. Vahimaa, “Overall coherence and coherent-mode expansion of spectrally partially coherent plane-wave pulses,” J. Opt. Soc. Am. A 21, 2117–2123 (2004). [CrossRef]
  27. G. L. Lamb, “Analytical descriptions of ultrashort optical pulse propagation in resonant medium,” Rev. Mod. Phys. 43, 99–124 (1971). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1. Fig. 2. Fig. 3.
 
Fig. 4.
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited