OSA's Digital Library

Journal of the Optical Society of America A

Journal of the Optical Society of America A

| OPTICS, IMAGE SCIENCE, AND VISION

  • Editor: Franco Gori
  • Vol. 30, Iss. 4 — Apr. 1, 2013
  • pp: 677–681

Similar structures, different characteristics: circular dichroism of metallic helix arrays with single-, double-, and triple-helical structures

Peng Zhang, Zhenyu Yang, Ming Zhao, Lin Wu, Zeqin Lu, Yongzhi Cheng, Rongzhou Gong, Yu Zheng, and Jian Duan  »View Author Affiliations


JOSA A, Vol. 30, Issue 4, pp. 677-681 (2013)
http://dx.doi.org/10.1364/JOSAA.30.000677


View Full Text Article

Enhanced HTML    Acrobat PDF (390 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We fabricated three-dimensional metallic helix arrays with single-, double-, and triple-helical structures. The transmission performances with the normal incident angle were measured in the microwave frequency of 12–18 GHz. For the single- and double-helical structures, giant circular dichroism with fairly wide bands is observed in the transmission spectra. However, the triple-helical structure does not exhibit circular dichroism. Based on the phenomenon of circular dichroism, the single- and double-helical structures can be used as broadband circular polarizers in the microwave region, but triple-helical ones cannot. The experiments have a good agreement with our simulation results, which were studied by the finite-difference time domain method.

© 2013 Optical Society of America

OCIS Codes
(050.1930) Diffraction and gratings : Dichroism
(120.7000) Instrumentation, measurement, and metrology : Transmission
(260.5430) Physical optics : Polarization
(300.6370) Spectroscopy : Spectroscopy, microwave

ToC Category:
Diffraction and Gratings

History
Original Manuscript: November 15, 2012
Revised Manuscript: January 30, 2013
Manuscript Accepted: February 6, 2013
Published: March 21, 2013

Citation
Peng Zhang, Zhenyu Yang, Ming Zhao, Lin Wu, Zeqin Lu, Yongzhi Cheng, Rongzhou Gong, Yu Zheng, and Jian Duan, "Similar structures, different characteristics: circular dichroism of metallic helix arrays with single-, double-, and triple-helical structures," J. Opt. Soc. Am. A 30, 677-681 (2013)
http://www.opticsinfobase.org/josaa/abstract.cfm?URI=josaa-30-4-677


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. N. Berova, K. Nakanishi, and R. W. Woody, Circular Dichroism: Principles and Applications (Wiley, 2000).
  2. N. J. Greenfield, “Using circular dichroism spectra to estimate protein secondary structure,” Nat. Protoc. 1, 2876–2890(2007). [CrossRef]
  3. U. J. Meierhenrich, J. J. Filippi, C. Meinert, J. H. Bredehoft, J. Takahashi, L. Nahon, N. C. Jones, and S. V. Hoffmann, “Circular dichroism of amino acids in the vacuum-ultraviolet region,” Angew. Chem. Int. Ed. 49, 7799–7802 (2010). [CrossRef]
  4. L. Whitmore and B. A. Wallace, “Protein secondary structure analyses from circular dichroism spectroscopy: methods and reference databases,” Biopolymers 89, 392–400 (2008). [CrossRef]
  5. F. Guerin, V. K. Varadan, V. V. Varadan, M. Labeyrie, and P. Y. Guillon, “Some experimental results on the dispersive behaviour of chiral composites,” J. Phys. D 28, 194–201 (1995). [CrossRef]
  6. B. Wang, J. Zhou, T. Koschny, and C. M. Soukoulis, “Nonplanar chiral metamaterials with negative index,” Appl. Phys. Lett. 94, 151112 (2009). [CrossRef]
  7. E. Plum, J. Zhou, J. Dong, V. A. Fedotov, T. Koschny, C. M. Soukoulis, and N. I. Zheludev, “Metamaterial with negative index due to chirality,” Phys. Rev. B 79, 035407 (2009). [CrossRef]
  8. S. Zhang, Y. S. Park, J. Li, X. Lu, W. Zhang, and X. Zhang, “Negative refractive index in chiral metamaterials,” Phys. Rev. Lett. 102, 023901 (2009). [CrossRef]
  9. R. Zhao, T. Koschny, and C. M. Soukoulis, “Chiral metamaterials: retrieval of the effective parameters with and without substrate,” Opt. Express 18, 14553–14567 (2010). [CrossRef]
  10. J. K. Gansel, M. Thiel, M. S. Rill, M. Decker, K. Bade, V. Saile, G. V. Freymann, S. Linden, and M. Wegener, “Gold helix photonic metamaterial as broadband circular polarizer,” Science 325, 1513–1515 (2009). [CrossRef]
  11. J. K. Gansel, M. Wegener, S. Burger, and S. Linden, “Gold helix photonic metamaterials: a numerical parameter study,” Opt. Express 18, 1059–1069 (2010). [CrossRef]
  12. Z. Y. Yang, M. Zhao, and Y. F. Lu, “Similar structures, different characteristics: optical performances of circular polarizers with single- and double-helical metamaterials,” J. Lightwave Technol. 28, 931–938 (2010). [CrossRef]
  13. Z. Y. Yang, M. Zhao, and P. X. Lu, “A numerical study on helix nanowire metamaterials as optical circular polarizers in the visible region,” IEEE Photon. Technol. Lett. 22, 1303–1305(2010). [CrossRef]
  14. Z. Y. Yang, M. Zhao, and P. X. Lu, “How to improve the signal-to-noise ratio for circular polarizers consisting of helical metamaterials?” Opt. Express 19, 4255–4260 (2011). [CrossRef]
  15. Z. Zhao, D. S. Gao, C. J. Bao, X. Zhou, T. T. Lu, and L. Chen, “High extinction ratio circular polarizer with conical double-helical metamaterials,” J. Lightwave Technol. 30, 2442–2446 (2012). [CrossRef]
  16. S. X. Li, Z. Y. Yang, J. Wang, and M. Zhao, “Broadband terahertz circular polarizers with single- and double-helical array metamaterials,” J. Opt. Soc. Am. A 28, 19–23 (2011). [CrossRef]
  17. I. V. Semchenko, S. A. Khakhomov, S. A. Tretyakov, A. H. Sihvola, and E. A. Fedosenko, “Reflection and transmission by a uniaxially bi-anisotropic slab under normal incidence of plane waves,” J. Phys. D 31, 2458–2464 (1998). [CrossRef]
  18. A. J. Bahr and K. R. Clausing, “An approximate model for artificial chiral material,” IEEE Trans. Antennas Propag. 42, 1592–1599 (1994). [CrossRef]
  19. C. R. Taylor, P. G. Lederer, F. C. Smith, and S. Haq, “Measurement and prediction of helix-loaded chiral composites,” IEEE Trans. Antennas Propag. 47, 692–700 (1999). [CrossRef]
  20. C. Wu, H. Q. Li, X. T. Yu, F. Li, H. Chen, and C. T. Chan, “Metallic helix array as a broadband wave plate,” Phys. Rev. Lett. 107, 177401 (2011). [CrossRef]
  21. J. Kaschke, J. K. Gansel, and M. Wegener, “On metamaterial circular polarizers based on metal N-helices,” Opt. Express 20, 26012–26020 (2012). [CrossRef]
  22. C. Menzel, C. Rockstuhl, and F. Lederer, “Advanced Jones calculus for the classification of periodic metamaterials,” Phys. Rev. A 82, 053811 (2010). [CrossRef]
  23. R. J. Potton, “Reciprocity in optics,” Rep. Prog. Phys. 67, 717–754 (2004). [CrossRef]
  24. J. D. Kraus and R. J. Marhefka, Antennas: for All Applications (McGraw-Hill, 2003).
  25. S. S. Zhong, Antenna Theory and Techniques (Electronic Industry, 2011).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1. Fig. 2. Fig. 3.
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited