Expand this Topic clickable element to expand a topic
Skip to content
Optica Publishing Group

Diffraction of convergent spherical waves with all possible polarization states using the Luneburg integral method

Not Accessible

Your library or personal account may give you access

Abstract

We present a complete electromagnetic study, which includes electric, magnetic, and Poynting vector fields of diffracted convergent spherical waves under all possible polarization states compatible with Maxwell’s equations. Exit pupil boundary conditions for these polarizations were obtained by means of Hertz potentials. Using these boundary conditions, two-dimensional Luneburg diffraction integrals for the three components of electric and magnetic fields were formulated, and after some approximations, we showed that the complete electromagnetic description of the inhomogeneous polarization states of spherical waves is reduced to the knowledge of seven one-dimensional integrals. The consistency of the method was tested by comparison with other previously reported methods for linearly polarized (LP), TE, and TM polarizations, while the versatility of the method was showed with the study of nonstandard polarization states, for example, that resulting from the superposition of TE and TM dephased spherical waves, which shows a helicoidal behavior of the Poynting vector at the focalization region, or the inhomogeneous LP state that exhibits a ring structure for the Poynting vector at the focal plane.

© 2013 Optical Society of America

Full Article  |  PDF Article
More Like This
Diffraction of converging electromagnetic waves

Taco D. Visser and Sjoerd H. Wiersma
J. Opt. Soc. Am. A 9(11) 2034-2047 (1992)

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Figures (7)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Equations (43)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Select as filters


Select Topics Cancel
© Copyright 2024 | Optica Publishing Group. All rights reserved, including rights for text and data mining and training of artificial technologies or similar technologies.