OSA's Digital Library

Journal of the Optical Society of America A

Journal of the Optical Society of America A

| OPTICS, IMAGE SCIENCE, AND VISION

  • Editor: Franco Gori
  • Vol. 30, Iss. 4 — Apr. 1, 2013
  • pp: 791–805

Photon diffusion in a homogeneous medium bounded externally or internally by an infinitely long circular cylindrical applicator. V. Steady-state fluorescence

Daqing Piao, Anqi Zhang, and Guan Xu  »View Author Affiliations


JOSA A, Vol. 30, Issue 4, pp. 791-805 (2013)
http://dx.doi.org/10.1364/JOSAA.30.000791


View Full Text Article

Enhanced HTML    Acrobat PDF (1061 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

As Part V in our series, this paper examines steady-state fluorescence photon diffusion in a homogenous medium that contains a homogenous distribution of fluorophores, and is enclosed by a “concave” circular cylindrical applicator or is enclosing a “convex” circular cylindrical applicator, both geometries being infinite in the longitudinal dimension. The aim is to predict by analytics and examine with the finite-element method the changing characteristics of the fluorescence-wavelength photon-fluence rate and the ratio (sometimes called the Born ratio) of it versus the excitation-wavelength photon-fluence rate, with respect to the source–detector distance. The analysis is performed for a source and a detector located on the medium–applicator interface and aligned either azimuthally or longitudinally in both concave and convex geometries. When compared to its steady-state counterparts on a semi-infinite medium–applicator interface with the same line-of-sight source–detector distance, the fluorescence-wavelength photon-fluence rate reduces faster along the longitudinal direction and slower along the azimuthal direction in the concave geometry, and conversely in the convex geometry. However, the Born ratio increases slower in both azimuthal and longitudinal directions in the concave geometry and faster in both directions in the convex geometry, respectively, when compared to that in the semi-infinite geometry.

© 2013 Optical Society of America

OCIS Codes
(170.3660) Medical optics and biotechnology : Light propagation in tissues
(170.5280) Medical optics and biotechnology : Photon migration
(170.6280) Medical optics and biotechnology : Spectroscopy, fluorescence and luminescence
(170.6960) Medical optics and biotechnology : Tomography
(170.7050) Medical optics and biotechnology : Turbid media

ToC Category:
Medical Optics and Biotechnology

History
Original Manuscript: January 3, 2013
Revised Manuscript: February 16, 2013
Manuscript Accepted: February 18, 2013
Published: March 29, 2013

Virtual Issues
Vol. 8, Iss. 5 Virtual Journal for Biomedical Optics

Citation
Daqing Piao, Anqi Zhang, and Guan Xu, "Photon diffusion in a homogeneous medium bounded externally or internally by an infinitely long circular cylindrical applicator. V. Steady-state fluorescence," J. Opt. Soc. Am. A 30, 791-805 (2013)
http://www.opticsinfobase.org/josaa/abstract.cfm?URI=josaa-30-4-791


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. V. Ntziachristos, C. Bremer, and R. Weissleder, “Fluorescence imaging with near-infrared light: new technological advances that enable in vivo molecular imaging,” Eur. J. Radiol. 13, 195–208 (2003). [CrossRef]
  2. R. Roy and E. M. Sevick-Muraca, “Truncated Newton’s optimization scheme for absorption and fluorescence optical tomography: part I theory and formulation,” Opt. Express 4, 353–371 (1999). [CrossRef]
  3. A. B. Milstein, S. Oh, K. J. Webb, C. A. Bouman, Q. Zhang, D. A. Boas, and R. P. Millane, “Fluorescence optical diffusion tomography,” Appl. Opt. 42, 3081–3094 (2003). [CrossRef]
  4. Y. Lin, H. Gao, O. Nalcioglu, and G. Gulsen, “Fluorescence diffuse optical tomography with functional and anatomical a priori information: feasibility study,” Phys. Med. Biol. 52, 5569–5585 (2007). [CrossRef]
  5. D. S. Kepshire, S. L. Gibbs-Strauss, J. A. O’Hara, M. Hutchins, N. Mincu, F. Leblond, M. Khayat, H. Dehghani, S. Srinivasan, and B. W. Pogue, “Imaging of glioma tumor with endogenous fluorescence tomography,” J. Biomed. Opt. 14, 030501 (2009). [CrossRef]
  6. A. Liebert, H. Wabnitz, H. Obrig, R. Erdmann, M. Möller, R. Macdonald, H. Rinneberg, A. Villringer, and J. Steinbrink, “Noninvasive detection of fluorescence from exogenous chromophores in the adult human brain,” NeuroImage 31, 600–608 (2006). [CrossRef]
  7. A. Corlu, R. Choe, T. Durduran, M. A. Rosen, M. Schweiger, S. R. Arridge, M. D. Schnall, and A. G. Yodh, “Three-dimensional in vivo fluorescence diffuse optical tomography of breast cancer in humans,” Opt. Express 15, 6696–6716 (2007). [CrossRef]
  8. A. Godavarty, A. B. Thompson, R. Roy, M. Gurfinkel, M. J. Eppstein, C. Zhang, and E. M. Sevick-Muraca, “Diagnostic imaging of breast cancer using fluorescence-enhanced optical tomography: phantom studies,” J. Biomed. Opt. 9, 488–496 (2004). [CrossRef]
  9. Y. Tan and H. Jiang, “DOT guided fluorescence molecular tomography of arbitrarily shaped objects,” Med. Phys. 35, 5703–5707 (2008). [CrossRef]
  10. X. Intes, J. Ripoll, Y. Chen, S. Nioka, A. G. Yodh, and B. Chance, “In vivo continuous-wave optical breast imaging enhanced with indocyanine green,” Med. Phys. 30, 1039–1047 (2003). [CrossRef]
  11. J. Boutet, L. Herve, M. Debourdeau, L. Guyon, P. Peltie, J.-M. Dinten, L. Saroul, F. Duboeuf, and D. Vray, “Bimodal ultrasound and fluorescence approach for prostate cancer diagnosis,” J. Biomed. Opt. 14, 064001 (2009). [CrossRef]
  12. C. Li, R. Liengsawangwong, H. Choi, and R. Cheung, “Using a priori structural information from magnetic resonance imaging to investigate the feasibility of prostate diffuse optical tomography and spectroscopy: a simulation study,” Med. Phys. 34, 266–274 (2007). [CrossRef]
  13. A. Ishimaru, “Diffusion of light in turbid material,” Appl. Opt. 28, 2210–2215 (1989). [CrossRef]
  14. X. D. Li, M. A. O’Leary, D. A. Boas, B. Chance, and A. G. Yodh, “Fluorescent diffuse photon density waves in homogeneous and heterogeneous turbid media: analytic solutions and applications,” Appl. Opt. 35, 3746–3758 (1996). [CrossRef]
  15. F. Martelli, S. Del Bianco, and P. Di Ninni, “Perturbative forward solver software for small localized fluorophores in tissue,” Biomed. Opt. Express 3, 26–36 (2012). [CrossRef]
  16. M. Sadoqi, P. Riseborough, and S. Kumar, “Analytical models for time-resolved fluorescence spectroscopy in tissues,” Phys. Med. Biol. 46, 2725–2743 (2001). [CrossRef]
  17. J. B. Domínguez and Y. Bérubé-Lauzière, “Light propagation from fluorescent probes in biological tissues by coupled time-dependent parabolic simplified spherical harmonics equations,” Biomed. Opt. Express 2, 817–837 (2011). [CrossRef]
  18. A. Zhang, D. Piao, C. F. Bunting, and B. W. Pogue, “Photon diffusion in a homogeneous medium bounded externally or internally by an infinitely long circular cylindrical applicator. I. Steady-state theory,” J. Opt. Soc. Am. A 27, 648–662 (2010). [CrossRef]
  19. A. Zhang, G. Xu, C. Daluwatte, G. Yao, C. F. Bunting, B. W. Pogue, and D. Piao, “Photon diffusion in a homogeneous medium bounded externally or internally by an infinitely long circular cylindrical applicator. II. Quantitative examinations of the steady-state theory,” J. Opt. Soc. Am. A 28, 66–75 (2011). [CrossRef]
  20. A. Zhang and D. Piao, “Photon diffusion in a homogeneous medium bounded externally or internally by an infinitely long circular cylindrical applicator. IV. Frequency-domain analysis,” J. Opt. Soc. Am. A 29, 1445–1458 (2012). [CrossRef]
  21. M. Gao, G. Lewis, G. M. Turner, A. Soubret, and V. Ntziachristos, “Effects of background fluorescence in fluorescence molecular tomography,” Appl. Opt. 44, 5468–5474 (2005). [CrossRef]
  22. V. Ntziachristos, G. Turner, J. Dunham, S. Windsor, A. Soubret, J. Ripoll, and H. A. Shih, “Planar fluorescence imaging using normalized data,” J. Biomed. Opt. 10, 064007 (2005). [CrossRef]
  23. A. Soubret and V. Ntziachristos, “Fluorescence molecular tomography in the presence of background fluorescence,” Phys. Med. Biol. 51, 3983–4001 (2006). [CrossRef]
  24. J. F. Abascal, J. Aguirre, J. Chamorro-Servent, M. Schweiger, S. Arridge, J. Ripoll, J. J. Vaquero, and M. Desco, “Influence of absorption and scattering on the quantification of fluorescence diffuse optical tomography using normalized data,” J. Biomed. Opt. 17, 036013 (2012). [CrossRef]
  25. R. C. Haskell, L. O. Svaasand, T. Tsay, T. Feng, M. S. McAdams, and B. J. Tromberg, “Boundary conditions for the diffusion equation in radiative transfer,” J. Opt. Soc. Am. A 11, 2727–2741 (1994). [CrossRef]
  26. D. Contini, F. Martelli, and G. Zaccanti, “Photon migration through a turbid slab described by a model based on diffusion approximation. I. Theory,” Appl. Opt. 36, 4587–4599 (1997). [CrossRef]
  27. A. Da Silva, M. Leabad, C. Driol, T. Bordy, M. Debourdeau, J. Dinten, P. Peltié, and P. Rizo, “Optical calibration protocol for an x-ray and optical multimodality tomography system dedicated to small-animal examination,” Appl. Opt. 48, D151–D162 (2009). [CrossRef]
  28. R. Aronson, “Boundary conditions for diffusion of light,” J. Opt. Soc. Am. A 12, 2532–2539 (1995). [CrossRef]
  29. M. Schweiger, S. R. Arridge, M. Hiraoka, and D. T. Delpy, “The finite element method for the propagation of light in scattering media: boundary and source conditions,” Med. Phys. 22, 1779–1792 (1995). [CrossRef]
  30. H. Dehghani, M. E. Eames, P. K. Yalavarthy, S. C. Davis, S. Srinivasan, C. M. Carpenter, B. W. Pogue, and K. D. Paulsen, “Near infrared optical tomography using NIRFAST: algorithm for numerical model and image reconstruction,” Commun. Numer. Methods Eng. 25, 711–732 (2009). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1. Fig. 2. Fig. 3.
 

« Previous Article

OSA is a member of CrossRef.

CrossCheck Deposited