OSA's Digital Library

Journal of the Optical Society of America A

Journal of the Optical Society of America A


  • Editor: Franco Gori
  • Vol. 30, Iss. 5 — May. 1, 2013
  • pp: 1013–1020

Characteristics of transverse-stress-induced phase change through a distinct dual-mode fiber in a Sagnac loop

Saba N. Khan, Sudip Kr. Chatterjee, Kajal Mondal, and Partha Roy Chaudhuri  »View Author Affiliations

JOSA A, Vol. 30, Issue 5, pp. 1013-1020 (2013)

View Full Text Article

Enhanced HTML    Acrobat PDF (928 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We report here the experimental realization of a fiber-optic transverse-stress sensor devised by a dual-mode optical-fiber segment in a standard Sagnac interferometer loop. The intermodal interference of the LP01 and LP02 modes of the dual-mode fiber (DMF) configuration is analyzed theoretically in the platform of polarization transmittance of the Sagnac loop in implementing the theoretical model. Several experimental measurements for various conditions of applied birefringence are studied at length and the results are compared with those estimated theoretically toward configuring a stress-measuring device. The study provides an understanding of the underlying physics of the working of DMF interference in a Sagnac configuration.

© 2013 Optical Society of America

OCIS Codes
(060.2370) Fiber optics and optical communications : Fiber optics sensors
(060.5060) Fiber optics and optical communications : Phase modulation

ToC Category:
Fiber Optics and Optical Communications

Original Manuscript: January 30, 2013
Revised Manuscript: April 1, 2013
Manuscript Accepted: April 10, 2013
Published: April 29, 2013

Saba N. Khan, Sudip Kr. Chatterjee, Kajal Mondal, and Partha Roy Chaudhuri, "Characteristics of transverse-stress-induced phase change through a distinct dual-mode fiber in a Sagnac loop," J. Opt. Soc. Am. A 30, 1013-1020 (2013)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. F. C. Fávero, S. M. M. Quintero, V. V. Silva, C. Martelli, A. M. B. Braga, I. C. S. Carvalho, and R. W. A. Llerena, “Photonic crystal fiber pressure sensor,” Proc. SPIE 7503. 750364 (2009). [CrossRef]
  2. J. Zhang, X. Qiao, T. Guo, Y. Weng, R. Wang, Y. Ma, Q. Rong, M. Hu, and Z. Feng, “Highly sensitive temperature sensor using PANDA fiber Sagnac interferometer,” J. Lightwave Technol. 29, 3640–3644 (2011). [CrossRef]
  3. J. Villatoro, V. Finazzi, G. Badenes, and V. Pruneri, “Highly sensitive sensors based on photonic crystal fiber modal interferometers,” J. Sens. 2009, 747803 (2009). [CrossRef]
  4. A. K. Ghatak and K. Thyagarajan, Optical Electronics(Cambridge University, 1989).
  5. Y. Park, T.-J. Ahn, Y. H. Kim, W.-T. Han, U.-C. Paek, and D. Y. Kim, “Measurement method for profiling the residual stress and the strain-optic coefficient of an optical fiber,” Appl. Opt. 41, 21–26 (2002). [CrossRef]
  6. T. A. Eftimov, “LP01–LP11 intermodal interference in highly birefringent two-mode fibres with differential LP11 polarization-mode attenuation,” J. Mod. Opt. 42, 541–564 (1995). [CrossRef]
  7. M. Spajer, B. Carquille, and H. Maillotte, “Application of intermodal interference to fiber sensors,” Opt. Commun. 60, 261–264 (1986). [CrossRef]
  8. T. A. Eftimov and W. J. Bock, “Polarization analysis of LP01 and LP11 intermodal interference in highly birefringent bow-tie optical fibers,” J. Lightwave Technol. 11, 1925–1936 (1993). [CrossRef]
  9. J. M. Estudillo-Ayalaa, J. Ruiz-Pinalesa, R. Rojas-Lagunaa, J. A. Andrade-Lucioa, O. G. Ibarra-Manzanoa, E. Alvarado-Mendeza, M. Torres-Cisnerosa, B. Ibarra-Escamillab, and E. A. Kuzinb, “Analysis of a Sagnac interferometer with low-birefringence twisted fiber,” Opt. Lasers Eng. 39, 635–643 (2003). [CrossRef]
  10. G. Sun, D. S. Moon, and Y. Chung, “Simultaneous temperature and strain measurement using two types of high-birefringence fibers in Sagnac loop mirror,” IEEE Photon. Technol. Lett. 19, 2027–2029 (2007). [CrossRef]
  11. X. Dong, H. Y. Tam, and P. Shum, “Temperature-insensitive strain sensor with polarization-maintaining photonic crystal fiber based Sagnac interferometer,” Appl. Phys. Lett. 90, 1511–1513 (2007). [CrossRef]
  12. H. Y. Fu, H. Y. Tam, L.-Y. Shao, X. Dong, P. K. A. Wai, C. Lu, and S. K. Khijwania, “Pressure sensor realized with polarization-maintaining photonic crystal fiber-based Sagnac interferometer,” Appl. Opt. 47, 2835–2839 (2008). [CrossRef]
  13. C.-S. Kim, Y.-G. Han, R. M. Sova, U.-C. Paek, and Y. Chung, “Optical fiber modal birefringence measurement based on Lyot–Sagnac interferometer,” IEEE Photon. Technol. Lett. 15, 269–271 (2003). [CrossRef]
  14. B. Culshaw, “The optical fibre Sagnac interferometer: an overview of its principles and applications,” Meas. Sci. Technol. 17, R1–R16 (2006). [CrossRef]
  15. O. Frazao, J. M. Baptista, and J. L. Santos, “Recent advances in high-birefringence fiber loop mirror sensors,” Sensors 7, 2970–2983 (2007). [CrossRef]
  16. K. S. Lim, C. H. Pua, and N. A. Awang, “Fiber loop mirror filter with two stage high birefringence fibers,” Prog. Electromagn. Res. C 9, 101–108 (2009). [CrossRef]
  17. T. A. Birks and P. Morkel, “Jones calculus of single-mode fiber Sagnac reflector,” Appl. Opt. 27, 3107–3113 (1988). [CrossRef]
  18. F. Liu, Q. Ye, F. Pang, J. Geng, R. Qu, and Z. Fang, “Polarization analysis and experimental implementation of PLZT electro-optical switch using fiber Sagnac interferometers,” J. Opt. Soc. Am. B 23, 709–713 (2006). [CrossRef]
  19. X. Fang and R. O. Claus, “Polarisation-independent all fiber wavelength division multiplexer based on a Sagnac interferometer,” Opt. Lett. 20, 2146–2148 (1995). [CrossRef]
  20. Y. Liu, B. Liu, X. Feng, W. Zhang, G. Zhou, S. Yuan, G. Kai, and X. Dong, “High-birefringence fiber loop mirrors and their applications as sensors,” Appl. Opt. 44, 2382–2390(2005). [CrossRef]
  21. D. B. Mortimore, “Fiber loop reflectors,” J. Lightwave Technol. 6, 1217–1224 (1988). [CrossRef]
  22. K. Morishita, “Wavelength selective fiber loop mirrors and their wavelength tunability by twisting,” J. Lightwave Technol. 13, 2276–2281 (1995). [CrossRef]
  23. T. A. Eftimov, “Resultant mode pattern and polarization in a LP01, LP02 two-mode linearly birefringent optical fibre,” Opt. Quantum Electron. 23, 1143–1160 (1991). [CrossRef]
  24. T. A. Eftimov, and W. J. Bock, “Sensing with a LP01–LP02 intermodal interferometer,” J. Lightwave Technol. 11, 2150–2156 (1993). [CrossRef]
  25. A. Kumar, R. K. Varshney, A. C. Siny, and P. Sharma, “Transmission characteristics of SMS fiber optic sensor structures,” Opt. Commun. 219, 215–219 (2003). [CrossRef]
  26. Y. Zhao, Y. Jin, and H. Liang, “Investigation on single-mode-multimode-single-mode fiber structure,” Photonics and Optoelectronics (SOPO) Symposium, Wuhan, China, 16–18 May2011, pp. 1–4.
  27. J. Gan, L. Shen, Q. Ye, Z. Pan, H. Cai, and R. Qu, “Orientation-free pressure sensor based on π-shifted single-mode-fiber Sagnac interferometer,” Appl. Opt. 49, 5043–5048 (2010). [CrossRef]
  28. G. B. Hocker, “Fiber-optic sensing of pressure and temperature,” Appl. Opt. 18, 1445–1448 (1979). [CrossRef]
  29. T. B. Woliñski, “Stress effects in twisted highly birefringent fibers,” Proc. SPIE 2070, 392–403 (1993). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited