OSA's Digital Library

Journal of the Optical Society of America A

Journal of the Optical Society of America A


  • Editor: Franco Gori
  • Vol. 30, Iss. 5 — May. 1, 2013
  • pp: 886–890

Circular polarization selective microcavity by using gold helix array

Yuqian Ye and Xuan Li  »View Author Affiliations

JOSA A, Vol. 30, Issue 5, pp. 886-890 (2013)

View Full Text Article

Enhanced HTML    Acrobat PDF (457 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



A circular polarization selective microcavity using chiral photonic metamaterials is designed, in which photons of a particular circular polarization dominate in stimulated emissions as a result of cavity resonances. The selection behavior originates from the special chiral reflector, which exhibits two elliptical polarization eigenstates almost identical to the same circular polarization. Theoretical analysis by using Jones matrix is given to explain this interesting phenomenon in detail. A lasing mode with an almost perfect circularly polarized field is present inside this cavity and observable at the output.

© 2013 Optical Society of America

OCIS Codes
(160.1585) Materials : Chiral media
(160.3918) Materials : Metamaterials
(130.5440) Integrated optics : Polarization-selective devices

ToC Category:
Integrated Optics

Original Manuscript: January 3, 2013
Revised Manuscript: March 23, 2013
Manuscript Accepted: March 25, 2013
Published: April 15, 2013

Yuqian Ye and Xuan Li, "Circular polarization selective microcavity by using gold helix array," J. Opt. Soc. Am. A 30, 886-890 (2013)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. A. V. Rogacheva, V. A. Fedotov, A. S. Schwanecke, and N. I. Zheludev, “Giant gyrotropy due to electromagnetic-field coupling in a bilayered chiral structure,” Phys. Rev. Lett. 97, 177401 (2006). [CrossRef]
  2. E. Plum, J. Zhou, J. Dong, V. A. Fedotov, T. Koschny, C. M. Soukoulis, and N. I. Zheludev, “Metamaterial with negative index due to chirality,” Phys. Rev. B 79, 035407 (2009). [CrossRef]
  3. M. Decker, M. W. Klein, M. Wegener, and S. Linden, “Circular dichroism of planar chiral magnetic metamaterials,” Opt. Lett. 32, 856–858 (2007). [CrossRef]
  4. C. Rockstuhl, C. Menzel, T. Paul, and F. Lederer, “Optical activity in chiral media composed of three-dimensional metallic meta-atoms,” Phys. Rev. B 79, 035321 (2009). [CrossRef]
  5. M. Decker, M. Ruther, C. E. Kriegler, J. Zhou, C. M. Soukoulis, S. Linden, and M. Wegener, “Strong optical activity from twisted-cross photonic metamaterials,” Opt. Lett. 34, 2501–2503 (2009). [CrossRef]
  6. J. K. Gansel, M. Thiel, M. S. Rill, M. Decker, K. Bade, V. Saile, G. von Freymann, S. Linden, and M. Wegener, “Gold helix photonic metamaterial as broadband circular polarizer,” Science 325, 1513–1515 (2009). [CrossRef]
  7. Y. Ye and S. He, “90° polarization rotator using a bilayered chiral metamaterial with giant optical activity,” Appl. Phys. Lett. 96, 203501 (2010). [CrossRef]
  8. Y. Ye, X. Li, F. Zhuang, and S. W. Chang, “Homogeneous circular polarizers using a bilayered chiral metamaterial,” Appl. Phys. Lett. 99, 031111 (2011). [CrossRef]
  9. K. Konishi, M. Nomura, N. Kumagai, S. Iwamoto, Y. Arakawa, and M. Kuwata-Gonokami, “Circularly-polarized light emission from semiconductor planar chiral nanostructures,” Phys. Rev. Lett. 106, 057402 (2011). [CrossRef]
  10. V. I. Kopp, B. Fan, H. K. M. Vithana, and A. Z. Genack, “Low-threshold lasing at the edge of a photonic stop band in cholesteric liquid crystals,” Opt. Lett. 23, 1707–1709 (1998). [CrossRef]
  11. S. A. Wolf, D. D. Awschalom, R. A. Buhrman, J. M. Daughton, S. von Molnr, M. L. Roukes, A. Y. Chtchelkanova, and D. M. Treger, “Spintronics: a spin-based electronics vision for the future,” Science 294, 1488–1495 (2001). [CrossRef]
  12. R. Vrijen, E. Yablonovitch, K. Wang, H. W. Jiang, A. Balandin, V. Roychowdhury, T. Mor, and D. Divincenzo, “Electron-spin-resonance transistors for quantum computing in silicon-germanium heterostructures,” Phys. Rev. A 62, 012306 (2000). [CrossRef]
  13. S. W. Chang, “Intra-cavity stimulated emissions of photons in almost pure spin states without imposed nonreciprocity,” Opt. Express 20, 2516–2527 (2012). [CrossRef]
  14. A. L. Shelankov and G. E. Pikus, “Reciprocity in reflection and transmission of light,” Phys. Rev. B 46, 3326–3336 (1992). [CrossRef]
  15. J. A. Kong, Electromagnetic Wave Theory (EMW, 2005).
  16. M. A. Ordal, L. L. Long, R. J. Bell, S. E. Bell, R. R. Bell, R. W. Alexander, and C. A. Ward, “Optical properties of the metals Al, Co, Cu, Au, Fe, Pb, Ni, Pd, Pt, Ag, Ti, and W in the infrared and far infrared,” Appl. Opt. 22, 1099–1119 (1983). [CrossRef]
  17. Computer Simulation Technology (CST), http://www.cst.com .
  18. J. K. Gansel, M. Wegener, S. Burger, and S. Linden, “Gold helix photonic metamaterials: a numerical parameter study,” Opt. Express 18, 1059–1069 (2010). [CrossRef]
  19. R. D. Meade, A. M. Rappe, K. D. Brommer, J. D. Joannopoulos, and O. L. Alerhand, “Accurate theoretical analysis of photonic band-gap materials,” Phys. Rev. B 48, 8434–8437 (1993). [CrossRef]
  20. M. Troccoli, C. Gmachl, F. Capasso, D. L. Sivco, and A. Y. Cho, “Mid-infrared (λ≈7.4  μm) quantum cascade laser amplifier for high power single-mode emission and improved beam quality,” Appl. Phys. Lett. 80, 4103–4105 (2002). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1. Fig. 2. Fig. 3.
Fig. 4.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited