OSA's Digital Library

Journal of the Optical Society of America A

Journal of the Optical Society of America A

| OPTICS, IMAGE SCIENCE, AND VISION

  • Editor: Franco Gori
  • Vol. 30, Iss. 5 — May. 1, 2013
  • pp: 898–909

Distributed Kalman filtering compared to Fourier domain preconditioned conjugate gradient for laser guide star tomography on extremely large telescopes

Luc Gilles, Paolo Massioni, Caroline Kulcsár, Henri-François Raynaud, and Brent Ellerbroek  »View Author Affiliations


JOSA A, Vol. 30, Issue 5, pp. 898-909 (2013)
http://dx.doi.org/10.1364/JOSAA.30.000898


View Full Text Article

Enhanced HTML    Acrobat PDF (867 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

This paper discusses the performance and cost of two computationally efficient Fourier-based tomographic wavefront reconstruction algorithms for wide-field laser guide star (LGS) adaptive optics (AO). The first algorithm is the iterative Fourier domain preconditioned conjugate gradient (FDPCG) algorithm developed by Yang et al. [Appl. Opt. 45, 5281 (2006)], combined with pseudo-open-loop control (POLC). FDPCG’s computational cost is proportional to N log(N), where N denotes the dimensionality of the tomography problem. The second algorithm is the distributed Kalman filter (DKF) developed by Massioni et al. [J. Opt. Soc. Am. A 28, 2298 (2011)], which is a noniterative spatially invariant controller. When implemented in the Fourier domain, DKF’s cost is also proportional to N log(N). Both algorithms are capable of estimating spatial frequency components of the residual phase beyond the wavefront sensor (WFS) cutoff frequency thanks to regularization, thereby reducing WFS spatial aliasing at the expense of more computations. We present performance and cost analyses for the LGS multiconjugate AO system under design for the Thirty Meter Telescope, as well as DKF’s sensitivity to uncertainties in wind profile prior information. We found that, provided the wind profile is known to better than 10% wind speed accuracy and 20 deg wind direction accuracy, DKF, despite its spatial invariance assumptions, delivers a significantly reduced wavefront error compared to the static FDPCG minimum variance estimator combined with POLC. Due to its nonsequential nature and high degree of parallelism, DKF is particularly well suited for real-time implementation on inexpensive off-the-shelf graphics processing units.

© 2013 Optical Society of America

OCIS Codes
(010.1080) Atmospheric and oceanic optics : Active or adaptive optics
(010.1330) Atmospheric and oceanic optics : Atmospheric turbulence

ToC Category:
Atmospheric and Oceanic Optics

History
Original Manuscript: January 31, 2013
Revised Manuscript: March 6, 2013
Manuscript Accepted: March 6, 2013
Published: April 16, 2013

Citation
Luc Gilles, Paolo Massioni, Caroline Kulcsár, Henri-François Raynaud, and Brent Ellerbroek, "Distributed Kalman filtering compared to Fourier domain preconditioned conjugate gradient for laser guide star tomography on extremely large telescopes," J. Opt. Soc. Am. A 30, 898-909 (2013)
http://www.opticsinfobase.org/josaa/abstract.cfm?URI=josaa-30-5-898


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. R. Conan, B. Espeland, M. A. Van Dam, and A. H. Bouchez, “Design of the laser tomography adaptive optics system for the giant Magellan telescope,” presented at the Second International Conference on Adaptive Optics for Extremely Large Telescopes, British Columbia, Canada, 25–30 September 2011.
  2. T. Fusco, S. Meimon, N. Thatte, H. Schnetler, Y. Clenet, M. Cohen, J. Paufique, P. Ammans, F. Clarke, J. L. Dournaux, M. Ferrari, D. Gratadour, N. Hubin, P. Jagourel, V. Michau, C. Petit, and M. Tecza, “Laser tomographic AO system for an integral field spectrograph on the E-ELT: the ATLAS project,” presented at the Second International Conference on Adaptive Optics for Extremely Large Telescopes, British Columbia, Canada, 25–30 September 2011.
  3. G. Herriot, D. Andersen, J. Atwood, P. Byrnes, C. Boyer, K. Caputa, C. Correia, J. Dunn, B. Ellerbroek, J. Fitzsimmons, L. Gilles, P. Hickson, A. Hill, J. Pazder, V. Reshetov, M. Smith, J. P. Veran, L. Wang, and I. Wevers, “NFIRAOS: multi conjugate AO system for TMT,” presented at the Second International Conference on Adaptive Optics for Extremely Large Telescopes, British Columbia, Canada, 25–30 September 2011.
  4. E. Diolaiti, I. Foppiani, J. M. Conan, C. R. Butler, R. I. Davies, A. Baruffolo, M. Bellazzini, G. Bregoli, P. Ciliegi, G. Cosentino, B. Delabre, T. Fusco, N. Hubin, M. Lombini, E. Marchetti, C. Petit, C. Robert, and L. Schreiber, “The E-ELT multi conjugate adaptive optics module,” presented at the Second International Conference on Adaptive Optics for Extremely Large Telescopes, British Columbia, Canada, 25–30 September 2011.
  5. B. Ellerbroek and F. Rigaut, “Methods for correcting tilt anisoplanatism in laser guide star based multiconjugate adaptive optics,” J. Opt. Soc. Am. A 18, 2539–2547 (2001). [CrossRef]
  6. T. Pfrommer and P. Hickson, “Properties and dynamics of mesospheric sodium and the impact on sodium LGS AO systems,” presented at the Second International Conference on Adaptive Optics for Extremely Large Telescopes, British Columbia, Canada, 25–30 September 2011.
  7. L. Gilles and B. Ellerbroek, “Split atmospheric tomography using laser and natural guide stars,” J. Opt. Soc. Am. A 25, 2427–2435 (2008). [CrossRef]
  8. L. Gilles, L. Wang, and E. Ellerbroek, “Minimum variance split tomography for laser guide star adaptive optics,” Eur. J. Control 17, 327–334 (2011). [CrossRef]
  9. L. Wang, L. Gilles, and B. Ellerbroek, “Analysis of the improvement in sky coverage for multiconjugate adaptive optics systems obtained using minimum variance split tomography,” Appl. Opt. 50, 3000–3010 (2011). [CrossRef]
  10. T. Fusco, J. M. Conan, G. Rousset, L. M. Mugnier, and V. Michau, “Optimal wave-front reconstruction strategies for multi-conjugate adaptive optics,” J. Opt. Soc. Am. A 18, 2527–2538 (2001). [CrossRef]
  11. Q. Yang, C. Vogel, and B. Ellerbroek, “Fourier domain preconditioned conjugate gradient algorithm for atmospheric tomography,” Appl. Opt. 45, 5281–5293 (2006). [CrossRef]
  12. C. Vogel and Q. Yang, “Fast optimal wavefront reconstruction for multi-conjugate adaptive optics using the Fourier domain preconditioned conjugate gradient algorithm,” Opt. Express 14, 7487–7498 (2006). [CrossRef]
  13. E. Thiébaut and M. Tallon, “Fast minimum variance wavefront reconstruction for extremely large telescopes,” J. Opt. Soc. Am. A 27, 1046–1059 (2010). [CrossRef]
  14. M. Tallon, C. Béchet, I. Tallon-Bosc, M. Le Louarn, E. Thiébaut, R. Clare, and E. Marchetti, “Performance of MCAO on the E-ELT using the fractal iterative method for fast atmospheric tomography,” presented at the Second International Conference on Adaptive Optics for Extremely Large Telescopes, British Columbia, Canada, 25–30 September 2011.
  15. R. Ramlau and M. Rosensteiner, “An efficient solution to the atmospheric turbulence tomography problem using Kaczmarz iteration,” Inverse Probl. 28, 095004 (2012). [CrossRef]
  16. R. Fraanje, J. Rice, M. Verhaegen, and N. Doelman, “Fast reconstruction and prediction of frozen flow turbulence on structured Kalman filtering,” J. Opt. Soc. Am. A 27, A235–A245 (2010). [CrossRef]
  17. P. Massioni, C. Kulcsár, H. F. Raynaud, and J. M. Conan, “Fast computation of an optimal controller for large-scale adaptive optics,” J. Opt. Soc. Am. A 28, 2298–2309 (2011). [CrossRef]
  18. L. Wang and B. Ellerbroek, “Computer simulations and real-time control of ELT AO systems using graphical processing units,” Proc. SPIE 8447, 844723 (2012). [CrossRef]
  19. “AO tomography workshop 2012: presentations and discussions,” available online http://www.dur.ac.uk/cfai/adaptiveoptics/aotw12/agenda/ .
  20. C. R. Vogel, “Sparse matrix methods for wavefront reconstruction revisited,” Proc. SPIE 5490, 1327–1335 (2004). [CrossRef]
  21. P. Piatrou and M. Roggemann, “Performance study of Kalman filter controller for multiconjugate adaptive optics,” Appl. Opt. 46, 1446–1455 (2007). [CrossRef]
  22. L. Gilles and B. Ellerbroek, “Constrained matched filtering for extended dynamic range and improved noise rejection for Shack–Hartmann wavefront sensing,” Opt. Lett. 33, 1159–1161 (2008). [CrossRef]
  23. B. Ellerbroek, “Efficient computation of minimum-variance wave-front reconstructors using sparse matrix techniques,” J. Opt. Soc. Am. A 19, 1803–1816 (2002). [CrossRef]
  24. A. Tokovinin and E. Viard, “Limiting precision of tomographic phase estimation,” J. Opt. Soc. Am. A 18, 873–882 (2001). [CrossRef]
  25. L. Gilles and B. Ellerbroek, “LAOS: linear adaptive optics simulator,” Thirty Meter Telescope Observatory Corporation, Document-7988, TMT.AOS.TEC.07.003 (2007).
  26. L. Gilles, B. Ellerbroek, and J. P. Veran, “Laser guide star multi-conjugate adaptive optics performance of the thirty meter telescope with elongated beacons and matched filtering,” Proc. SPIE 6272, 627236 (2006). [CrossRef]
  27. C. Kulcsár, H.-F. Raynaud, C. Petit, and J.-M. Conan, “Minimum variance prediction and control for adaptive optics,” Automatica 48, 1939–1954 (2012). [CrossRef]
  28. C. Kulcsár, H. F. Raynaud, C. Petit, J. M. Conan, J. M. Conan, and P. V. de Lesegno, “Optimal control, observers and integrators in adaptive optics,” Opt. Express 14, 7464–7564(2006). [CrossRef]
  29. B. Le Roux, J. M. Conan, C. Kulcsár, H. F. Raynaud, L. Mugnier, and T. Fusco, “Optimal control law for classical and multiconjugate adaptive optics,” J. Opt. Soc. Am. A 21, 1261–1276(2004). [CrossRef]
  30. B. D. O. Anderson and J. B. Moore, Optimal Control, Linear Quadratic Methods (Prentice-Hall, 1990).
  31. A. Cortes, B. Neichel, A. Guesalaga, J. Osborn, F. Rigaut, and D. Guzman, “Atmospheric turbulence profiling using multiple laser star wavefront sensors,” http://arxiv.org/abs/1210.1999 (2012).
  32. M. Roggemann and B. Welsh, Imaging Through Turbulence (CRC, 1996).
  33. C. Vogel, Computational Methods for Inverse Problems (SIAM, 2002).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1. Fig. 2. Fig. 3.
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited