OSA's Digital Library

Journal of the Optical Society of America A

Journal of the Optical Society of America A


  • Editor: Franco Gori
  • Vol. 30, Iss. 5 — May. 1, 2013
  • pp: 910–915

Optical phase noise engineering via acousto-optic interaction and its interferometric applications

Nandan Satapathy, Deepak Pandey, Sourish Banerjee, and Hema Ramachandran  »View Author Affiliations

JOSA A, Vol. 30, Issue 5, pp. 910-915 (2013)

View Full Text Article

Enhanced HTML    Acrobat PDF (747 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



Rapid and fine control over the phase of light is demonstrated by transferring digitally generated phase jumps from radio-frequency electrical signals onto light by means of acousto-optic interaction, and the underlying mechanism elucidated. This technique was used to engineer optical phase noise by tailoring the statistics of phase jumps in the electrical signal, which was then quantified using visibility measurements of the interference fringes. Such controlled dephasing finds applications in modern experiments involving the spread or diffusion of light in optical networks. In addition, the zero-delay intensity-intensity correlation [G2(0)] values of light emerging from different ports of a well-stabilized Mach–Zehnder interferometer in the presence of engineered partial phase noise are calculated, and it is shown analytically how the dark port of the interferometer nontrivially becomes a weak source of highly correlated or bunched photons.

© 2013 Optical Society of America

OCIS Codes
(030.5290) Coherence and statistical optics : Photon statistics
(120.3180) Instrumentation, measurement, and metrology : Interferometry
(120.5060) Instrumentation, measurement, and metrology : Phase modulation
(230.1040) Optical devices : Acousto-optical devices

ToC Category:
Optical Devices

Original Manuscript: December 14, 2012
Revised Manuscript: March 21, 2013
Manuscript Accepted: March 24, 2013
Published: April 16, 2013

Nandan Satapathy, Deepak Pandey, Sourish Banerjee, and Hema Ramachandran, "Optical phase noise engineering via acousto-optic interaction and its interferometric applications," J. Opt. Soc. Am. A 30, 910-915 (2013)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. M. Mohseni, P. Rebentrost, S. Lloyd, and A. Aspuru-Guzik, “Environment-assisted quantum walks in photosynthetic energy transfer,” J. Chem. Phys. 129, 174106 (2008). [CrossRef]
  2. M. B. Plenio and S. F. Huelga, “Dephasing-assisted transport: quantum networks and biomolecules,” New J. Phys. 10, 113019 (2008). [CrossRef]
  3. F. Caruso, A. W. Chin, A. Datta, S. F. Huelga, and M. B. Plenio, “Highly efficient energy excitation transfer in light-harvesting complexes: the fundamental role of noise-assisted transport,” J. Chem. Phys. 131, 105106 (2009). [CrossRef]
  4. F. Caruso, S. F. Huelga, and M. B. Plenio, “Noise-enhanced classical and quantum capacities in communication networks,” Phys. Rev. Lett. 105, 190501 (2010). [CrossRef]
  5. V. Kendon, “Decoherence in quantum walks: a review,” Math. Struct. Comp. Sci. 17, 1169–1220 (2007). [CrossRef]
  6. V. Kendon and B. Tregenna, “Decoherence can be useful in quantum walks,” Phys. Rev. A 67, 042315 (2003). [CrossRef]
  7. M. A. Broome, A. Fedrizzi, B. P. Lanyon, I. Kassal, A. Aspuru-Guzik, and A. G. White, “Discrete single-photon quantum walks with tunable decoherence,” Phys. Rev. Lett. 104, 153602 (2010). [CrossRef]
  8. A. Schreiber, K. N. Cassemiro, V. Potoček, A. Gàbris, I. Jex, and C. Silberhorn, “Decoherence and disorder in quantum walks: from ballistic spread to localization,” Phys. Rev. Lett. 106, 180403 (2011). [CrossRef]
  9. D. Pandey, N. Satapathy, M. S. Meena, and H. Ramachandran, “Quantum walk of light in frequency space and its controlled dephasing,” Phys. Rev. A 84, 042322 (2011). [CrossRef]
  10. F. Caruso, N. Spagnolo, C. Vitelli, F. Sciarrino, and M. B. Plenio, “Simulation of noise-assisted transport via optical cavity networks,” Phys. Rev. A 83, 013811 (2011). [CrossRef]
  11. E. Li, J. Yao, D. Yu, J. Xi, and J. Chicharo, “Optical phase shifting with acousto-optic devices,” Opt. Lett. 30, 189–191 (2005). [CrossRef]
  12. M. Sadgrove, and K. Nakagawa, “Fast, externally triggered, digital phase controller for an optical lattice,” Rev. Sci. Instrum. 82, 113104 (2011). [CrossRef]
  13. M. Sadgrove, S. Kumar, and K. Nakagawa, “Enhanced factoring with a Bose-Einstein condensate,” Phys. Rev. Lett. 101, 180502 (2008). [CrossRef]
  14. M. Sadgrove, S. Kumar, and K. Nakagawa, “Noise-induced energy resonance for atoms in a periodic potential,” Phys. Rev. Lett. 103, 010403 (2009). [CrossRef]
  15. A. Valencia, G. Scarcelli, M. D’Angelo, and Y. Shih, “Two-photon imaging with thermal light,” Phys. Rev. Lett. 94, 063601 (2005). [CrossRef]
  16. D. Zhang, Y.-H. Zhai, L.-A. Wu, and X.-H. Chen, “Correlated two-photon imaging with true thermal light,” Opt. Lett. 30, 2354–2356 (2005). [CrossRef]
  17. F. Ferri, D. Magatti, A. Gatti, M. Bache, E. Brambilla, and L. A. Lugiato, “High-resolution ghost image and ghost diffraction experiments with thermal light,” Phys. Rev. Lett. 94, 183602 (2005). [CrossRef]
  18. A. Gatti, M. Bache, D. Magatti, E. Brambilla, F. Ferri, and L. A. Lugiato, “Coherent imaging with pseudo-thermal incoherent light,” J. Mod. Opt. 53, 739–760 (2006). [CrossRef]
  19. B. E. A. Saleh and M. C. Teich, Fundamentals of Photonics, 2nd ed. (Wiley-Interscience, 2007) Chap. 19.
  20. This phase resolution pertains to rf. Direct measurement of phase shift of 0.01° on optical fringes requires the interferometer to be ultrastable.
  21. G. Baym, “The physics of Hanbury Brown–Twiss intensity interferometry: from stars to nuclear collisions,” Acta Phys. Polonica B 29, 1839–1884 (1998).
  22. N. Satapathy, D. Pandey, P. Mehta, S. Sinha, J. Samuel, and H. Ramachandran, “Classical light analogue of the non-local Aharonov-Bohm effect,” Europhys. Lett. 97, 50011 (2012). [CrossRef]
  23. M. B. Plenio and S. F. Huelga, “Entangled light from white noise,” Phys. Rev. Lett. 88, 197901 (2002). [CrossRef]
  24. A. Beige, S. Bose, D. Braun, S. F. Huelga, P. L. Knight, M. B. Plenio, and V. Vedral, “Entangling atoms and ions in dissipative environments,” J. Mod. Opt. 47, 2583–2598 (2000). [CrossRef]
  25. V. Parigi, A. Zavatta, M. Kim, and M. Bellini, “Probing quantum commutation rules by addition and subtraction of single photons to/from a light field,” Science 317, 1890–1893 (2007). [CrossRef]
  26. L.-H. Ou and L.-M. Kuang, “Ghost Imaging with third-order correlated thermal light,” J. Phys. B 40, 1833–1844 (2007). [CrossRef]
  27. Y. Bai and S. Han, “Ghost imaging with thermal light by third-order correlation,” Phys. Rev. A 76, 043828 (2007). [CrossRef]
  28. I. N. Agafonov, M. V. Chekhova, T. S. Iskhakov, and A. N. Penin, “High-visibility multiphoton interference of Hanbury Brown–Twiss type for classical light,” Phys. Rev. A 77, 053801 (2008). [CrossRef]
  29. D.-Z. Cao, J. Xiong, S.-H. Zhang, L.-F. Lin, L. Gao, and K. Wang, “Enhancing visibility and resolution in Nth-order intensity correlation of thermal light,” Appl. Phys. Lett. 92, 201102 (2008). [CrossRef]
  30. P. Hong, J. Liu, and G. Zhang, “Two-photon superbunching of thermal light via multiple two-photon path interference,” Phys. Rev. A 86, 013807 (2012). [CrossRef]
  31. D. Pandey, N. Satapathy, B. Suryabrahmam, J. Ivan, and H. Ramachandran, “Classical light sources with tunable temporal coherence and tailored photon number distributions,” arXiv preprint, arXiv:1210.1403 (2012).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited