OSA's Digital Library

Journal of the Optical Society of America A

Journal of the Optical Society of America A


  • Editor: Franco Gori
  • Vol. 30, Iss. 6 — Jun. 1, 2013
  • pp: 1261–1272

Imaging sparse metallic cylinders through a local shape function Bayesian compressive sensing approach

Lorenzo Poli, Giacomo Oliveri, and Andrea Massa  »View Author Affiliations

JOSA A, Vol. 30, Issue 6, pp. 1261-1272 (2013)

View Full Text Article

Enhanced HTML    Acrobat PDF (760 KB) | SpotlightSpotlight on Optics Open Access

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



An innovative method for the localization of multiple sparse metallic targets is proposed. Starting from the local shape function (LSF) formulation of the inverse scattering problem and exploiting the multitask Bayesian compressive sensing (MT-BCS) paradigm, a two-step approach is described where, after a first estimation of the LSF scattering amplitudes, the reconstruction of the metallic objects is yielded through a thresholding and voting step. Selected numerical examples are presented to analyze the accuracy, the robustness, and the computational efficiency of the LSF–MT-BCS technique.

© 2013 Optical Society of America

OCIS Codes
(100.3190) Image processing : Inverse problems
(100.6950) Image processing : Tomographic image processing
(280.0280) Remote sensing and sensors : Remote sensing and sensors
(290.3200) Scattering : Inverse scattering
(350.4010) Other areas of optics : Microwaves

ToC Category:

Original Manuscript: February 19, 2013
Manuscript Accepted: May 5, 2013
Published: May 28, 2013

Virtual Issues
July 23, 2013 Spotlight on Optics

Lorenzo Poli, Giacomo Oliveri, and Andrea Massa, "Imaging sparse metallic cylinders through a local shape function Bayesian compressive sensing approach," J. Opt. Soc. Am. A 30, 1261-1272 (2013)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. J. Shen, X. Chen, Y. Zhong, and L. Ran, “Inverse scattering problem in presence of a conducting cylinder,” Opt. Express 19, 10698–10706 (2011). [CrossRef]
  2. K. Agarwal, X. Chen, and Y. Zhong, “A multipole-expansion based linear sampling method for solving inverse scattering problems,” Opt. Express 18, 6366–6381 (2010). [CrossRef]
  3. A. Liseno and R. Pierri, “Imaging perfectly conducting objects as support of induced currents: Kirchhoff approximation and frequency diversity,” J. Opt. Soc. Am. A 19, 1308–1318 (2002). [CrossRef]
  4. A. Liseno, R. Pierri, and F. Soldovieri, “Shape identification by physical optics: the two-dimensional TE case,” J. Opt. Soc. Am. A 20, 1827–1830 (2003). [CrossRef]
  5. T. Dorney, W. Symes, R. Baraniuk, and D. Mittleman, “Terahertz multistatic reflection imaging,” J. Opt. Soc. Am. A 19, 1432–1442 (2002). [CrossRef]
  6. Y.-C. Chen, Y.-F. Chen, C.-C. Chiu, and C.-Y. Chang, “Image reconstruction of a buried perfectly conducting cylinder illuminated by transverse electric waves,” Int. J. Imaging Syst. Technol. 15, 261–265 (2005). [CrossRef]
  7. W. Chien and C.-C. Chiu, “Using NU-SSGA to reduce the searching time in inverse problem of a buried metallic object,” IEEE Trans. Antennas Propag. 53, 3128–3134 (2005). [CrossRef]
  8. A. Schatzberg and A. Devaney, “Rough surface inverse scattering within the Rytov approximation,” J. Opt. Soc. Am. A 10, 942–950 (1993). [CrossRef]
  9. R. Pierri, R. Solimene, A. Liseno, and J. Romano, “Linear distribution imaging of thin metallic cylinders under mutual scattering,” IEEE Trans. Antennas Propag. 53, 3019–3029 (2005). [CrossRef]
  10. A. Brancaccio, G. Leone, and R. Solimene, “Fault detection in metallic grid scattering,” J. Opt. Soc. Am. A 28, 2588–2599 (2011). [CrossRef]
  11. E. P. Ribeiro, A. C. Bruno, P. C. Ribeiro, J. Szczupak, and O. G. Symko, “Image of a two-dimensional magnetic moment distribution: application to detect small metallic objects in the human body,” in 1992 14th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (IEEE, 1992), Vol. 5, 2178–2179.
  12. D. Asteli and B. Ottersten, “The effect of local scattering on direction of arrival estimation with MUSIC,” IEEE Trans. Signal Process. 47, 3220–3234 (1999). [CrossRef]
  13. E. Cekli and H. A. Cirpan, “Unconditional maximum likelihood approach for localization of near-field sources: algorithm and performance analysis,” J. Inst. Electron. Commun. Eng. Jpn. 57, 9–15 (2003).
  14. K. J. Langenberg, K. Mayer, A. Zimmer, and C. Kohl, “Nondestructive evaluation of embedded structures in concrete: modeling and tomographic imaging,” in Proceedings of the URSI International Symposium on Electromagnetic Theory (URSI EMTS, 2004), pp. 1203–1205.
  15. R. E. Kleinman and P. M. van den Berg, “Two-dimensional location and shape reconstruction,” Radio Sci. 29, 1157–1169 (1994). [CrossRef]
  16. F. K. Gruber, E. A. Marengo, and A. J. Devaney, “Time-reversal imaging with multiple signal classification considering multiple scattering between the targets,” J. Acoust. Soc. Am. 115, 3042–3047 (2004). [CrossRef]
  17. T. Miwa and I. Arai, “Super-resolution imaging for point reflectors near transmitting and receiving array,” IEEE Trans. Antennas Propag. 52, 220–229 (2004). [CrossRef]
  18. G. Micolau, M. Saillard, and P. Borderies, “DORT method as applied to ultrawideband signals for detection of buried objects,” IEEE Trans. Geosci. Remote Sens. 41, 1813–1820 (2003). [CrossRef]
  19. P. Rocca, M. Benedetti, M. Donelli, D. Franceschini, and A. Massa, “Evolutionary optimization as applied to inverse scattering problems,” Inverse Problems 25, 1–41 (2009).
  20. P. Rocca, G. Oliveri, and A. Massa, “Differential evolution as applied to electromagnetics,” IEEE Antennas Propag. Mag. 53, 38–49 (2011). [CrossRef]
  21. C.-C. Chiu, C.-H. Sun, C.-L. Li, and C.-H. Huang, “Comparative study of some population-based optimization algorithms on inverse scattering of a two-dimensional perfectly conducting cylinder in dielectric slab medium,” IEEE Trans. Geosci. Remote Sens. 51, 2302–2315 (2013). [CrossRef]
  22. Y. Zhou, J. Li, and H. Ling, “Shape inversion of metallic cavities using hybrid genetic algorithm combined with tabu list,” Electron. Lett. 39, 280–281 (2003). [CrossRef]
  23. A. Qing, “Electromagnetic inverse scattering of multiple two-dimensional perfectly conducting objects by the differential evolution strategy,” IEEE Trans. Antennas Propag. 51, 1251–1262 (2003). [CrossRef]
  24. I. T. Rekanos, “Shape reconstruction of a perfectly conducting scatterer using differential evolution and particle swarm optimization,” IEEE Trans. Geosci. Remote Sens. 46, 1967–1974 (2008). [CrossRef]
  25. R. Pierri, A. Liseno, R. Solimene, and F. Soldovieri, “Beyond physical optics SVD shape reconstruction of metallic cylinders,” IEEE Trans. Antennas Propag. 54, 655–665 (2006). [CrossRef]
  26. C. Ramananjaona, M. Lambert, and D. Lesselier, “Shape inversion from TM and TE real data by controlled evolution of level sets,” Inverse Probl. 17, 1585–1595 (2001). [CrossRef]
  27. R. Solimene, A. Brancaccio, J. Romano, and R. Pierri, “Localizing thin metallic cylinders by a 2.5-D linear distributional approach: experimental results,” IEEE Trans. Antennas Propag. 56, 2630–2637 (2008). [CrossRef]
  28. D. Colton and P. Monk, “A novel method for solving the inverse scattering problem for time-harmonic acoustic waves in the resonance region II,” SIAM J. Appl. Math. 46, 506–523 (1986). [CrossRef]
  29. K. A. Michalski, “Electromagnetic imaging of circular–cylindrical conductors and tunnels using a differential evolution algorithm,” Microw. Opt. Technol. Lett. 27, 330–334 (2000). [CrossRef]
  30. W. C. Chew and G. P. Otto, “Microwave imaging of multiple conducting cylinders using local shape functions,” IEEE Microw. Guided Wave Lett. 2, 284–286 (1992). [CrossRef]
  31. A. Qing and C. K. Lee, “Microwave imaging of parallel perfectly conducting cylinders using real-coded genetic algorithm coupled with Newton–Kantorovich method” Prog. Electromagn. Res. 28, 275–294 (2000). [CrossRef]
  32. A. Qing, C. K. Lee, and L. Jen, “Electromagnetic inverse scattering of two-dimensional perfectly conducting objects by real-coded genetic algorithm,” IEEE Trans. Geosci. Remote Sens. 39, 665–676 (2001). [CrossRef]
  33. W. C. Chew, L. Gurel, Y.-M. Wang, G. Otto, R. L. Wagner, and Q. H. Liu, “A generalized recursive algorithm for wave-scattering solutions in two dimensions,” IEEE Trans. Microwave Theory Tech. 40, 716–723 (1992). [CrossRef]
  34. G. P. Otto and W. C. Chew, “Microwave inverse scattering—local shape function imaging for improved resolution of strong scatterers,” IEEE Trans. Microwave Theory Tech. 42, 137–141 (1994). [CrossRef]
  35. T. Takenaka, Z. Q. Meng, T. Tanaka, and W. C. Chew, “Local shape function combined with genetic algorithm applied to inverse scattering for strips,” Microw. Opt. Technol. Lett. 16, 337–341 (1997). [CrossRef]
  36. I. T. Rekanos and T. D. Tsiboukis, “An inverse scattering technique for microwave imaging of binary objects,” IEEE Trans. Microw. Theory Tech. 50, 1439–1441 (2002). [CrossRef]
  37. Y. Alvarez-Lopez, A. Dominguez-Casas, C. Garcia-Gonzalez, and F. Las-Heras, “Geometry reconstruction of metallic bodies using the sources reconstruction method,” IEEE Antennas Wireless Propag. Lett. 9, 1197–1200 (2010). [CrossRef]
  38. S. Ji, D. Dunson, and L. Carin, “Multitask compressive sensing,” IEEE Trans. Signal Process. 57(4), 92–106 (2009). [CrossRef]
  39. R. G. Baraniuk, “Compressive sampling,” IEEE Signal Process. Mag. 24, 118–121 (2007). [CrossRef]
  40. E. J. Candes and M. B. Wakin, “An introduction to compressive sampling,” IEEE Signal Process. Mag. 25, 21–30 (2008). [CrossRef]
  41. S. Ji, Y. Xue, and L. Carin, “Bayesian compressive sensing,” IEEE Trans. Signal Process. 56, 2346–2356 (2008). [CrossRef]
  42. G. Oliveri, P. Rocca, and A. Massa, “A Bayesian compressive sampling-based inversion for imaging sparse scatterers,” IEEE Trans. Geosci. Remote Sens. 49, 3993–4006 (2011). [CrossRef]
  43. L. Poli, G. Oliveri, P. Rocca, and A. Massa, “Bayesian compressive sensing approaches for the reconstruction of two-dimensional sparse scatterers under TE illuminations,” IEEE Trans. Geosci. Remote Sens. 51, 2920–2936 (2013).
  44. G. Oliveri, L. Poli, P. Rocca, and A. Massa, “Bayesian compressive optical imaging within the Rytov approximation,” Opt. Lett. 37, 1760–1762 (2012). [CrossRef]
  45. L. Poli, G. Oliveri, and A. Massa, “Microwave imaging within the first-order Born approximation by means of the contrast-field Bayesian compressive sensing,” IEEE Trans. Antennas Propag. 60, 2865–2879 (2012). [CrossRef]
  46. G. Oliveri and A. Massa, “Bayesian compressive sampling for pattern synthesis with maximally sparse non-uniform linear arrays,” IEEE Trans. Antennas Propag. 59, 467–481 (2011). [CrossRef]
  47. G. Oliveri, M. Carlin, and A. Massa, “Complex-weight sparse linear array synthesis by Bayesian compressive sampling,” IEEE Trans. Antennas Propag. 60, 2309–2326 (2012). [CrossRef]
  48. F. Viani, G. Oliveri, and A. Massa, “Compressive sensing pattern matching techniques for synthesizing planar sparse arrays,” IEEE Trans. Antennas Propag. 59, 467–481 (2011). [CrossRef]
  49. G. Oliveri, P. Rocca, and A. Massa, “Reliable diagnosis of large linear arrays—Bayesian compressive sensing approach,” IEEE Trans. Antennas Propag. 60, 4627–4636 (2012). [CrossRef]
  50. J. A. Tropp and S. J. Wright, “Computational methods for sparse solution of linear inverse problems,” Proc. IEEE 98, 948–958 (2010). [CrossRef]
  51. O. M. Bucci and G. Franceschetti, “On the degrees of freedom of scattered fields,” IEEE Trans. Antennas Propag. 37, 918–926 (1989). [CrossRef]
  52. S. Ji, Y. Xue, and L. Carin, “Bayesian compressive sensing code,” (2013), http://people.ee.duke.edu/lcarin/BCS.html .

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited