OSA's Digital Library

Journal of the Optical Society of America A

Journal of the Optical Society of America A


  • Editor: Franco Gori
  • Vol. 30, Iss. 8 — Aug. 1, 2013
  • pp: 1640–1645

Analytical description of high-aperture STED resolution with 0–2π vortex phase modulation

Hao Xie, Yujia Liu, Dayong Jin, Philip J. Santangelo, and Peng Xi  »View Author Affiliations

JOSA A, Vol. 30, Issue 8, pp. 1640-1645 (2013)

View Full Text Article

Enhanced HTML    Acrobat PDF (356 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



Stimulated emission depletion (STED) can achieve optical superresolution, with the optical diffraction limit broken by the suppression on the periphery of the fluorescent focal spot. Previously, it is generally experimentally accepted that there exists an inverse square root relationship with the STED power and the resolution, but with arbitrary coefficients in expression. In this paper, we have removed the arbitrary coefficients by exploring the relationship between the STED power and the achievable resolution from vector optical theory for the widely used 02π vortex phase modulation. Electromagnetic fields of the focal region of a high numerical aperture objective are calculated and approximated into polynomials of radius in the focal plane, and analytical expression of resolution as a function of the STED intensity has been derived. As a result, the resolution can be estimated directly from the measurement of the saturation power of the dye and the STED power applied in the region of high STED power.

© 2013 Optical Society of America

OCIS Codes
(180.1790) Microscopy : Confocal microscopy
(180.2520) Microscopy : Fluorescence microscopy
(260.2110) Physical optics : Electromagnetic optics

ToC Category:

Original Manuscript: March 26, 2013
Revised Manuscript: June 21, 2013
Manuscript Accepted: June 25, 2013
Published: July 23, 2013

Virtual Issues
Vol. 8, Iss. 9 Virtual Journal for Biomedical Optics

Hao Xie, Yujia Liu, Dayong Jin, Philip J. Santangelo, and Peng Xi, "Analytical description of high-aperture STED resolution with 0–2π vortex phase modulation," J. Opt. Soc. Am. A 30, 1640-1645 (2013)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. E. Abbe, “Beiträge zur Theorie des Mikroskops und der mikroskopischen Wahrnehmung,” Archiv für Mikroskopische Anatomie 9, 413–418 (1873). [CrossRef]
  2. Y. Ding, P. Xi, and Q. Ren, “Hacking the optical diffraction limit: review on recent developments of fluorescence nanoscopy,” Chin. Sci. Bull. 56, 1857–1876 (2011). [CrossRef]
  3. J. Keller, A. Schönle, and S. Hell, “Efficient fluorescence inhibition patterns for RESOLFT microscopy,” Opt. Express 15, 3361–3371 (2007). [CrossRef]
  4. E. Rittweger, K. Han, S. Irvine, C. Eggeling, and S. Hell, “STED microscopy reveals crystal colour centres with nanometric resolution,” Nat. Photonics 3, 144–147 (2009). [CrossRef]
  5. S. Hell and J. Wichmann, “Breaking the diffraction resolution limit by stimulated emission: stimulated-emission-depletion fluorescence microscopy,” Opt. Lett. 19, 780–782 (1994). [CrossRef]
  6. J. Fölling, M. Bossi, H. Bock, R. Medda, C. Wurm, B. Hein, S. Jakobs, C. Eggeling, and S. Hell, “Fluorescence nanoscopy by ground-state depletion and single-molecule return,” Nat. Methods 5, 943–945 (2008). [CrossRef]
  7. S. Irvine, T. Staudt, E. Rittweger, J. Engelhardt, and S. Hell, “Direct light-driven modulation of luminescence from mn-doped znse quantum dots,” Angew. Chem. 120, 2725–2728 (2008). [CrossRef]
  8. S. Galiani, B. Harke, G. Vicidomini, G. Lignani, F. Benfenati, A. Diaspro, and P. Bianchini, “Strategies to maximize the performance of a STED microscope,” Opt. Express 20, 7362–7374 (2012). [CrossRef]
  9. Y. Liu, Y. Ding, E. Alonas, W. Zhao, P. Santangelo, D. Jin, J. Piper, J. Teng, Q. Ren, and P. Xi, “Achieving λ/10 resolution CW STED nanoscopy with a Ti:sapphire oscillator,” PLoS ONE 7, e40003 (2012). [CrossRef]
  10. Y. Tzeng, O. Faklaris, B. Chang, Y. Kuo, J. Hsu, and H. Chang, “Superresolution imaging of albumin-conjugated fluorescent nanodiamonds in cells by stimulated emission depletion,” Angew. Chem. Int. Ed. 50, 2262–2265 (2011). [CrossRef]
  11. G. Vicidomini, A. Schönle, H. Ta, K. Y. Han, G. Moneron, C. Eggeling, and S. W. Hell, “STED nanoscopy with time-gated detection: theoretical and experimental aspects,” PLoS ONE 8, e54421 (2013). [CrossRef]
  12. V. Westphal and S. Hell, “Nanoscale resolution in the focal plane of an optical microscope,” Phys. Rev. Lett. 94, 143903 (2005). [CrossRef]
  13. B. Harke, J. Keller, C. Ullal, V. Westphal, A. Schönle, and S. Hell, “Resolution scaling in STED microscopy,” Opt. Express 16, 4154–4162 (2008). [CrossRef]
  14. K. Y. Han, K. I. Willig, E. Rittweger, F. Jelezko, C. Eggeling, and S. W. Hell, “Three-dimensional stimulated emission depletion microscopy of nitrogen-vacancy centers in diamond using continuous-wave light,” Nano Lett. 9, 3323–3329 (2009). [CrossRef]
  15. T. Watanabe, Y. Igasaki, N. Fukuchi, M. Sakai, S. Ishiuchi, M. Fujii, T. Omatsu, K. Yamamoto, and Y. Iketaki, “Formation of a doughnut laser beam for super-resolving microscopy using a phase spatial light modulator,” Opt. Eng. 43, 1136 (2004). [CrossRef]
  16. S. Deng, L. Liu, Y. Cheng, R. Li, and Z. Xu, “Effects of primary aberrations on the fluorescence depletion patterns of sted microscopy,” Opt. Express 18, 1657–1666 (2010). [CrossRef]
  17. X. Hao, C. Kuang, T. Wang, and X. Liu, “Effects of polarization on the de-excitation dark focal spot in STED microscopy,” J. Opt. 12, 115707 (2010). [CrossRef]
  18. E. Wolf, “Electromagnetic diffraction in optical systems. I. an integral representation of the image field,” Proc. R. Soc. Edinburgh, Sect. A 253, 349–357 (1959). [CrossRef]
  19. B. Richards and E. Wolf, “Electromagnetic diffraction in optical systems. II. Structure of the image field in an aplanatic system,” Proc. R. Soc. London, Ser. A 253, 358–379 (1959). [CrossRef]
  20. “STED3D: PSF simulation and resolution estimation for STED,” http://code.google.com/p/sted3d/ .
  21. M. Nasse and J. Woehl, “Realistic modeling of the illumination point spread function in confocal scanning optical microscopy,” J. Opt. Soc. Am. A 27, 295–302 (2010). [CrossRef]
  22. H. Voort and G. Brakenhoff, “3-D image formation in high-aperture fluorescence confocal microscopy: a numerical analysis,” J. Microsc. 158, 43–54 (1990). [CrossRef]
  23. M. Leutenegger, C. Eggeling, and S. Hell, “Analytical description of STED microscopy performance,” Opt. Express 18, 26417–26429 (2010). [CrossRef]
  24. K. Chu and J. Mertz, “Single-exposure complementary aperture phase microscopy with polarization encoding,” Opt. Lett. 37, 3798–3800 (2012). [CrossRef]
  25. G. Donnert, J. Keller, R. Medda, M. Andrei, S. Rizzoli, R. Lührmann, R. Jahn, C. Eggeling, and S. Hell, “Macromolecular-scale resolution in biological fluorescence microscopy,” Proc. Natl. Acad. Sci. USA 103, 11440–11445 (2006). [CrossRef]
  26. K. Willig, B. Harke, R. Medda, and S. Hell, “STED microscopy with continuous wave beams,” Nat. Methods 4, 915–918 (2007). [CrossRef]
  27. S. Hell and E. Stelzer, “Properties of a 4pi confocal fluorescence microscope,” J. Opt. Soc. Am. A 9, 2159–2166 (1992). [CrossRef]
  28. M. Born, E. Wolf, and A. Bhatia, Principles of Optics: Electromagnetic Theory of Propagation, Interference and Diffraction of Light (Cambridge University, 1999).
  29. J. W. Goodman, Introduction to Fourier Optics (Roberts & Company, 2005).
  30. “Fluorescent dyes used in STED microscopy,” February 2013, http://nanobiophotonics.mpibpc.mpg.de/old/dyes/ .

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited