OSA's Digital Library

Journal of the Optical Society of America A

Journal of the Optical Society of America A


  • Editor: Franco Gori
  • Vol. 31, Iss. 1 — Jan. 1, 2014
  • pp: 155–161

Plasmon-based tomographic microscopy

Juan Elezgaray, Lotfi Berguiga, and Françoise Argoul  »View Author Affiliations

JOSA A, Vol. 31, Issue 1, pp. 155-161 (2014)

View Full Text Article

Enhanced HTML    Acrobat PDF (491 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



The imaging principle of the scanning surface plasmon microscope (SSPM) springs from the high sensitivity of surface plasmons to modifications of material properties near the dielectric–metal interface. In this paper, we show that tomographic techniques can be applied to SSPM imaging of dielectric objects to reach resolutions beyond the diffraction-limited half-wavelength scale. Furthermore, this high resolution is not limited to the multiple scattering regime. Finally, we conclude that SSPM is less sensitive to noise because it provides higher contrast ratio than other far-field microscopies.

© 2013 Optical Society of America

OCIS Codes
(180.3170) Microscopy : Interference microscopy
(240.6680) Optics at surfaces : Surface plasmons

ToC Category:
Optics at Surfaces

Original Manuscript: July 23, 2013
Revised Manuscript: December 1, 2013
Manuscript Accepted: December 3, 2013
Published: December 18, 2013

Virtual Issues
Vol. 9, Iss. 3 Virtual Journal for Biomedical Optics

Juan Elezgaray, Lotfi Berguiga, and Françoise Argoul, "Plasmon-based tomographic microscopy," J. Opt. Soc. Am. A 31, 155-161 (2014)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. M. Born and E. Wolf, Principles of Optics: Electromagnetic Theory of Propagation, Interference and Diffraction of Light, 7th ed. (Cambridge University, 1999).
  2. A. Sentenac, P. C. Chaumet, and K. Belkebir, “Beyond the Rayleigh criterion: grating assisted far-field optical diffraction tomography,” Phys. Rev. Lett. 97, 243901 (2006). [CrossRef]
  3. Y. Ruan, P. Bon, E. Mudry, G. Maire, P. C. Chaumet, H. Giovannini, K. Belkebir, A. Talneau, B. Wattellier, S. Monneret, and A. Sentenac, “Tomographic diffractive microscopy with a wavefront sensor,” Opt. Lett. 37, 1631–1633 (2012). [CrossRef]
  4. J. Girard, G. Maire, H. Giovannini, A. Talneau, K. Belkebir, P. C. Chaumet, and A. Sentenac, “Nanometric resolution using far-field optical tomographic microscopy in the multiple scattering regime,” Phys. Rev. A 82, 061801(R) (2010). [CrossRef]
  5. H. Kano, S. Mizuguchi, and S. Kawata, “Excitation of surface-plasmon polaritons by a focused laser beam,” J. Opt. Soc. Am. B 15, 1381–1386 (1998). [CrossRef]
  6. M. G. Somekh, S. Liu, and T. S. Velinov, “Optical V(z) for high-resolution 2π surface plasmon microscopy,” Opt. Lett. 25, 823–825 (2000). [CrossRef]
  7. L. Berguiga, S.-J. Zhang, F. Argoul, and J. Elezgaray, “High-resolution surface-plasmon imaging in air and in water: V(z) curve and operating conditions,” Opt. Lett. 32, 509–511 (2007). [CrossRef]
  8. L. Berguiga, E. Boyer-Provera, C. Martinez-Torres, J. Elezgaray, A. Arneodo, and F. Argoul, “Guided wave microscopy: mastering the inverse problem,” Opt. Lett. 38, 4269–4272 (2013). [CrossRef]
  9. C. E. H. Berger, R. P. H. Kooyman, and J. Greve, “Resolution in surface plasmon microscopy,” Rev. Sci. Instrum. 65, 2829–2836 (1994). [CrossRef]
  10. M. G. Somekh, “Surface plasmon and surface wave microscopy,” in Optical imaging and Microscopy, A. Török and A. Tao, eds., Vol. 87, Springer Series in Optical Sciences (Springer-Verlag, 2003), pp. 275–307.
  11. E. M. Yeatman and E. A. Ash, “Surface plasmon microscopy,” Electron. Lett. 23, 1091–1092 (1987). [CrossRef]
  12. B. Rothenhausler and W. Knoll, “Surface-plasmon microscopy,” Nature 332, 615–617 (1988). [CrossRef]
  13. K. Belkebir and A. Sentenac, “High-resolution optical diffraction microscopy,” J. Opt. Soc. Am. 20, 1223–1229 (2003). [CrossRef]
  14. J. Elezgaray, T. Roland, L. Berguiga, and F. Argoul, “Modeling of the scanning surface plasmon microscope,” J. Opt. Soc. Am. A 27, 450–457 (2010). [CrossRef]
  15. R. Dorn, S. Quabis, and G. Leuchs, “Sharper focus for a radially polarized light beam,” Phys. Rev. Lett. 91, 233901 (2003). [CrossRef]
  16. B. Richards and E. Wolf, “Electromagnetic diffraction in optical systems II. Structure of the image field in an aplanatic system,” Proc. R. Soc. London, Ser. A 253, 358–379 (1959). [CrossRef]
  17. T. Roland, L. Berguiga, J. Elezgaray, and F. Argoul, “Scanning surface plasmon imaging of nanoparticles,” Phys. Rev. B 81, 235419 (2010). [CrossRef]
  18. J. Elezgaray, L. Berguiga, and F. Argoul, “Optimization of branched resonant nanostructures illuminated by a strongly focused beam,” Appl. Phys. Lett. 97, 243103 (2010). [CrossRef]
  19. W. C. Chew and Y. M. Wang, “Efficient ways to compute the vector addition theorem,” J. Electromagn. Waves. Appl. 7, 651–665 (1993). [CrossRef]
  20. G. Videen, “Light scattering from a sphere behind a surface,” J. Opt. Soc. Am. 10, 110–117 (1993). [CrossRef]
  21. A. Doicu, Y. A. Eremin, and T. Wriedt, “Convergence of the T-matrix method for light scattering from a particle on or near a surface,” Opt. Commun. 159, 266–277 (1999). [CrossRef]
  22. W. H. Press, B. P. Flannery, S. A. Teukolsky, and W. T. Vetterling, Numerical Recipes: The Art of Scientific Computing (Cambridge University, 1986).
  23. P. S. Carney and J. C. Schotland, “Theory of total-internal-reflection tomography,” J. Opt. Soc. Am. A 20, 542–547 (2003). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited