OSA's Digital Library

Journal of the Optical Society of America A

Journal of the Optical Society of America A

| OPTICS, IMAGE SCIENCE, AND VISION

  • Editor: Franco Gori
  • Vol. 31, Iss. 1 — Jan. 1, 2014
  • pp: 183–187

Real-time pseudocolor coding thermal ghost imaging

Deyang Duan and Yunjie Xia  »View Author Affiliations


JOSA A, Vol. 31, Issue 1, pp. 183-187 (2014)
http://dx.doi.org/10.1364/JOSAA.31.000183


View Full Text Article

Enhanced HTML    Acrobat PDF (288 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

In this work, a color ghost image of a black-and-white object is obtained by a real-time pseudocolor coding technique that includes equal spatial frequency pseudocolor coding and equal density pseudocolor coding. This method makes the black-and-white ghost image more conducive to observation. Furthermore, since the ghost imaging comes from the intensity cross-correlations of the two beams, ghost imaging with the real-time pseudocolor coding technique is better than classical optical imaging with the same technique in overcoming the effects of light interference.

© 2013 Optical Society of America

OCIS Codes
(110.1650) Imaging systems : Coherence imaging
(110.2990) Imaging systems : Image formation theory

ToC Category:
Imaging Systems

History
Original Manuscript: September 26, 2013
Revised Manuscript: November 15, 2013
Manuscript Accepted: December 1, 2013
Published: December 19, 2013

Citation
Deyang Duan and Yunjie Xia, "Real-time pseudocolor coding thermal ghost imaging," J. Opt. Soc. Am. A 31, 183-187 (2014)
http://www.opticsinfobase.org/josaa/abstract.cfm?URI=josaa-31-1-183


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. F. F. D. Magatti, L. A. Lugiato, A. Gatti, “Differential ghost imaging,” Phys. Rev. Lett. 104, 253603 (2010). [CrossRef]
  2. K. W. C. Chan, D. S. Simon, A. V. Sergienko, N. D. Hardy, J. H. Shapiro, “Theoretical analysis of quantum ghost imaging through turbulence,” Phys. Rev. A 84, 043807 (2011). [CrossRef]
  3. N. D. Hardy, J. H. Shapiro, “Computational ghost imaging versus imaging laser radar for three-dimensional imaging,” Phys. Rev. A 87, 023820 (2013). [CrossRef]
  4. M. B. D. Magatti, M. Molteni, A. Gatti, L. A. Lugiato, F. Ferri, “Backscattering differential ghost imaging in turbid media,” Phys. Rev. Lett. 110, 083901 (2013). [CrossRef]
  5. M.-F. Li, Y.-R. Zhang, K.-H. Luo, L.-A. Wu, H. Fan, “Time-correspondence differential ghost imaging,” Phys. Rev. A 87, 033813 (2013). [CrossRef]
  6. H. D. Hardy, Analyzing and Improving Image Quality in Reflective Ghost Imaging (MIT, 2011).
  7. J. Cheng, “Ghost imaging through turbulent atmosphere,” Opt. Express 17, 7916–7921 (2009). [CrossRef]
  8. D. Shi, C. Fan, P. Zhang, H. Shen, “Two-wavelength ghost imaging through atmospheric turbulence,” Opt. Express 21, 2050–2064 (2013). [CrossRef]
  9. P. Xu, H. Y. Leng, Z. H. Zhu, Y. F. Bai, “Lensless imaging by entangled photons from quadratic nonlinear photonic crystals,” Phys. Rev. A 86, 013805 (2012). [CrossRef]
  10. T. B. Pittman, Y. H. Shih, D. V. Strekalov, A. V. Sergienko, “Optical imaging by means of two-photon quantum entanglement,” Phys. Rev. A 52, R3429 (1995). [CrossRef]
  11. R. S. Bennink, S. J. Bentley, R. W. Boyd, “‘Two-photon’ coincidence imaging with a classical source,” Phys. Rev. Lett. 89, 113601 (2002). [CrossRef]
  12. A. Gatti, E. Brambilla, M. Bache, L. A. Lugiato, “Ghost imaging with thermal light: comparing entanglement and classical correlation,” Phys. Rev. Lett. 93, 093602 (2004). [CrossRef]
  13. A. Valencia, G. Scarcelli, M. D’Angelo, Y. H. Shih, “Two-photon imaging with thermal light,” Phys. Rev. Lett. 94, 063601 (2005). [CrossRef]
  14. S. S. Welsh, M. P. Edgar, R. Bowman, P. Jonathan, B. Sun, M. J. Padgett, “Fast full-color computational imaging with single-pixel detector,” Opt. Express, 21, 23068–23074 (2013). [CrossRef]
  15. F. T. S. Yu, S. L. Zhuang, T. H. Chao, M. S. Dymek, “Real-time white light spatial frequency and density pseudocolor encoder,” Appl. Opt, 19, 2986–2990 (1980). [CrossRef]
  16. M. Zhang, Q. Wei, X. Shen, Y. Liu, “Lensless Fourier-transform ghost imaging with classical incoherent light,” Phys. Rev. A 75, 021803(R) (2007). [CrossRef]
  17. T. Setala, T. Shirai, A. T. Friberg, “Fractional Fourier transform in temporal ghost imaging with classical light,” Phys. Rev. A 82, 043813 (2010). [CrossRef]
  18. F. T. S. Yu, S. Jutamulia, S. Z. Yin, Introduction to Information Optics (Academic, 2001).
  19. K. W. C. Chan, M. N. O’Sullivan, R. W. Boyd, “Two-color ghost imaging,” Phys. Rev. A 79, 033808 (2009). [CrossRef]
  20. D.-Z. Cao, J. Xiong, K. Wang, “Geometrical optics in correlated imaging systems,” Phys. Rev. A 71, 013801 (2005). [CrossRef]
  21. J. Cheng, S. Han, “Incoherent coincidence imaging and its applicability in x-ray diffraction,” Phys. Rev. Lett. 92, 093903 (2004). [CrossRef]
  22. G. Scarcelli, V. Berardi, Y. H. Shih, “Phase conjugate mirror via two-photon thermal light imaging,” Appl. Phys. Lett. 88, 061106 (2006). [CrossRef]
  23. B. I. Erkmen, J. H. Shapiro, “Signal-to-noise ratio of Gaussian-state ghost imaging,” Phys. Rev. A 79, 023833 (2009). [CrossRef]
  24. E. Brambilla, A. Gatti, M. Bache, L. A. Lugiato, “Simultaneous near-field and far-field spatial quantum correlations in the high-gain regime of parametric down-conversion,” Phys. Rev. A 69, 023802 (2004). [CrossRef]
  25. F. W. Billmeyer, M. Saltzman, Principles of Color Technology, 2nd ed. (Wiley-Interscience, 1981).
  26. B. I. Erkmen, J. H. Shapiro, “Unified theory of ghost imaging with Gaussian-state light,” Phys. Rev. A 77, 043809 (2008). [CrossRef]
  27. D. Duan, Y. Xia, “Reflective ghost imaging with classical Gaussian-state light,” Chin. Opt. Lett. 10, 031102 (2012). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1. Fig. 2.
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited