OSA's Digital Library

Journal of the Optical Society of America A

Journal of the Optical Society of America A

| OPTICS, IMAGE SCIENCE, AND VISION

  • Editor: Franco Gori
  • Vol. 31, Iss. 1 — Jan. 1, 2014
  • pp: 206–216

Optical binding of cylinder photonic molecules in the near field of partially coherent fluctuating Gaussian Schell model sources: a coherent mode representation

Juan Miguel Auñón, F. J. Valdivia-Valero, and Manuel Nieto-Vesperinas  »View Author Affiliations


JOSA A, Vol. 31, Issue 1, pp. 206-216 (2014)
http://dx.doi.org/10.1364/JOSAA.31.000206


View Full Text Article

Enhanced HTML    Acrobat PDF (1187 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We present a theory and computation method of radiation pressure from partially coherent light by establishing a coherent mode representation of the radiation forces. This is illustrated with the near field emitted from a Gaussian Schell model source, mechanically acting on a single cylinder with magnetodielectric behavior, or on a photonic molecule constituted by a pair of such cylinders. Thus after studying the force produced by a single particle, we address the effects of the spatial coherence on the bonding and antibonding states of two particles. The coherence length manifests the critical limitation of the contribution of evanescent modes to the scattered fields, and hence to the nature and strength of the electromagnetic forces, even when electric and/or magnetic partial wave resonances are excited.

© 2013 Optical Society of America

OCIS Codes
(030.1640) Coherence and statistical optics : Coherence
(030.6600) Coherence and statistical optics : Statistical optics
(260.2110) Physical optics : Electromagnetic optics
(350.4855) Other areas of optics : Optical tweezers or optical manipulation

ToC Category:
Coherence and Statistical Optics

History
Original Manuscript: October 22, 2013
Manuscript Accepted: November 22, 2013
Published: December 24, 2013

Citation
Juan Miguel Auñón, F. J. Valdivia-Valero, and Manuel Nieto-Vesperinas, "Optical binding of cylinder photonic molecules in the near field of partially coherent fluctuating Gaussian Schell model sources: a coherent mode representation," J. Opt. Soc. Am. A 31, 206-216 (2014)
http://www.opticsinfobase.org/josaa/abstract.cfm?URI=josaa-31-1-206


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. L. G. Wang, C. L. Zhao, L. Q. Wang, X. H. Lu, and S. Y. Zhu, “Effect of spatial coherence on radiation forces acting on a Rayleigh dielectric sphere,” Opt. Lett. 32, 1393–1395 (2007). [CrossRef]
  2. C. Zhao, Y. Cai, X. Lu, and H. T. Eyyuboğlu, “Radiation force of coherent and partially coherent flat-topped beams on a Rayleigh particle,” Opt. Express 17, 1753–1765 (2009). [CrossRef]
  3. C. Zhao, Y. Cai, and O. Korotkova, “Radiation force of scalar and electromagnetic twisted Gaussian Schell-model beams,” Opt. Express 17, 21472–21487 (2009). [CrossRef]
  4. S. M. Kim and G. Gbur, “Momentum conservation in partially coherent wave fields,” Phys. Rev. A 79, 033844 (2009). [CrossRef]
  5. J. M. Auñón and M. Nieto-Vesperinas, “Optical forces on small particles from partially coherent light,” J. Opt. Soc. Am. A 29, 1389–1398 (2012). [CrossRef]
  6. C. Henkel, J. Joulain, J. P. Mulet, and J. J. Greffet, “Radiation forces on small particles in thermal near fields,” J. Opt. A 4, s109–s114 (2002). [CrossRef]
  7. M. Antezza, L. Pitaevskii, and S. Stringari, “New asymptotic beahvior of the surface-atom force out of thermal equilibrium,” Phys. Rev. Lett. 95, 113202 (2005). [CrossRef]
  8. J. M. Auñón and M. Nieto-Vesperinas, “Photonic forces in the near field of statistically homogeneous fluctuating sources,” Phys. Rev. A 85, 053828 (2012). [CrossRef]
  9. J. M. Auñón, C. W. Qiu, and M. Nieto-Vesperinas, “Tailoring photonic forces on a magnetodielectric nanoparticle with a fluctuating optical source,” Phys. Rev. A 88, 043817 (2013). [CrossRef]
  10. S. Sukhov, K. Douglass, and A. Dogariu, “Dipole–dipole interaction in random electromagnetic fields,” Opt. Lett. 38, 2385–2387 (2013). [CrossRef]
  11. P. Chaumet and M. Nieto-Vesperinas, “Optical binding of particles with or without the presence of a flat dielectric surface,” Phys. Rev. B 64, 035422 (2001). [CrossRef]
  12. K. C. Neuman and S. M. Block, “Optical trapping,” Rev. Sci. Instrum. 75, 2787–2809 (2004). [CrossRef]
  13. M. L. Povinelli, S. G. Johnson, M. Loncar, M. Ibanescu, E. J. Smythe, F. Capasso, and J. D. Joannopoulos, “High-Q enhancement of attractive and repulsive optical forces between coupled whispering-gallery-mode resonators,” Opt. Express 13, 8286–8295 (2005). [CrossRef]
  14. K. Dholakia and P. Zemanek, “Gripped by light: optical binding,” Rev. Mod. Opt. 82, 1767–1791 (2010). [CrossRef]
  15. L. Mandel and E. Wolf, Optical Coherence and Quantum Optics (Cambridge University, 1995).
  16. D. F. V. James and E. Wolf, “Correlation-induced spectral changes,” Rep. Prog. Phys. 59, 771818 (1996).
  17. P. S. Carney, E. Wolf, and G. S. Agarwal, “Statistical generalizations of the optical cross-section theorem with application to inverse scattering,” J. Opt. Soc. Am. A 14, 3366–3371 (1997). [CrossRef]
  18. J. Lindberg, T. Setälä, M. Kaivola, and A. T. Friberg, “Spatial coherence effects in light scattering from metallic nanocylinders,” J. Opt. Soc. Am. A 23, 1349–1358 (2006). [CrossRef]
  19. E. Wolf, Introduction to the Theory of Coherence and Polarization of Light (Cambridge University, 2007).
  20. R. Carminati, “Subwavelength spatial correlations in near-field speckle patterns,” Phys. Rev. A 81, 053804 (2010). [CrossRef]
  21. A. Ashkin, “Acceleration and trapping of particles by radiation pressure,” Phys. Rev. Lett. 24, 156–159 (1970). [CrossRef]
  22. G. Piquero, F. Gori, P. Romanini, M. Santarsiero, R. Borghi, and A. Mondello, “Synthesis of partially polarized Gaussian Schell-model sources,” Opt. Commun. 208, 9–16 (2002). [CrossRef]
  23. A. T. Friberg and J. Turunen, “Imaging of Gaussian Schell-model sources,” J. Opt. Soc. Am. A 5, 713–720 (1988). [CrossRef]
  24. J. M. Auñón and M. Nieto-Vesperinas, “Partially coherent fluctuating sources that produce the same optical force as a laser beam,” Opt. Lett. 38, 2869–2872 (2013). [CrossRef]
  25. A. Starikov and E. Wolf, “Coherent-mode representation of Gaussian Schell-model sources and of their radiation fields,” J. Opt. Soc. Am. 72, 923–928 (1982). [CrossRef]
  26. E. Wolf, “New theory of partial coherence in the space-frequency domain. Part I: spectra and cross spectra of steady-state sources,” J. Opt. Soc. Am. 72, 343–351 (1982). [CrossRef]
  27. L. Peng, L. Ran, H. Chen, H. Zhang, J. A. Kong, and T. M. Grzegorczyk, “Experimental observation of left-handed behavior in an array of standard dielectric resonators,” Phys. Rev. Lett. 98, 157403 (2007). [CrossRef]
  28. K. Vynck, D. Felbacq, E. Centeno, A. I. Căbuz, D. Cassagne, and B. Guizal, “All-dielectric rod-type metamaterials at optical frequencies,” Phys. Rev. Lett. 102, 133901 (2009). [CrossRef]
  29. A. García-Etxarri, R. Gómez-Medina, L. S. Froufe-Pérez, C. López, L. Chantada, F. Scheffold, J. Aizpurua, M. Nieto-Vesperinas, and J. J. Sáenz, “Strong magnetic response of submicron Silicon particles in the infrared,” Opt. Express 19, 4815–4826 (2011). [CrossRef]
  30. A. I. Kuznetsov, A. E. Miroshnichenko, Y. H. Fu, J. Zhang, and B. Lukyanchuk, “Magnetic light,” Sci. Rep. 2, 492 (2012). [CrossRef]
  31. M. Nieto-Vesperinas, R. Gomez-Medina, and J. J. Sáenz, “Angle-suppressed scattering and optical forces on submicrometer dielectric particles,” J. Opt. Soc. Am. A 28, 54–60 (2011). [CrossRef]
  32. M. Nieto-Vesperinas, P. C. Chaumet, and A. Rahmani, “Near-field photonic forces,” Philos. Trans. R. Soc. London, Ser. A 362, 719–737 (2004). [CrossRef]
  33. V. Wong and M. A. Ratner, “Gradient and nongradient contributions to plasmon-enhanced optical forces on silver nanoparticles,” Phys. Rev. B 73, 075416 (2006). [CrossRef]
  34. M. Nieto-Vesperinas, J. J. Sáenz, R. Gómez-Medina, and L. Chantada, “Optical forces on small magnetodielectric particles,” Opt. Express 18, 11428–11443 (2010). [CrossRef]
  35. M. Nieto-Vesperinas, Scattering and Diffraction in Physical Optics (World Science, 2006).
  36. M. Nieto-Vesperinas and E. Wolf, “Phase conjugation and symmetries with wave fields in free space containing evanescent components,” J. Opt. Soc. Am. A 2, 1429–1434 (1985). [CrossRef]
  37. M. Nieto-Vesperinas, “Problem of image superresolution with a negative-refractive-index slab,” J. Opt. Soc. Am. A 21, 491–498 (2004). [CrossRef]
  38. R. Carminati and J.-J. Greffet, “Near-field effects in spatial coherence of thermal sources,” Phys. Rev. Lett. 82, 1660–1663 (1999). [CrossRef]
  39. T. Setälä, A. Shevchenko, M. Kaivola, and A. T. Friberg, “Degree of polarization for optical near fields,” Phys. Rev. E 66, 016615 (2002). [CrossRef]
  40. J. Ellis, A. Dogariu, S. Ponomarenko, and E. Wolf, “Degree of polarization of statistically stationary electromagnetic fields,” Opt. Commun. 248, 333–337 (2005). [CrossRef]
  41. J. Ellis and A. Dogariu, “On the degree of polarization of random electromagnetic fields,” Opt. Commun. 253, 257–265 (2005). [CrossRef]
  42. J. M. Auñón and M. Nieto-Vesperinas, “On two definitions of the three-dimensional degree of polarization in the near field of statistically homogeneous partially coherent sources,” Opt. Lett. 38, 58–60 (2013). [CrossRef]
  43. J. Tervo, T. Setälä, and A. T. Friberg, “Theory of partially coherent electromagnetic fields in the space–frequency domain,” J. Opt. Soc. Am. A 21, 2205–2215 (2004). [CrossRef]
  44. J. D. Jackson, Classical Electrodynamics (Wiley, 1998).
  45. P. C. Chaumet and M. Nieto-Vesperinas, “Time-averaged total force on a dipolar sphere in an electromagnetic field,” Opt. Lett. 25, 1065–1067 (2000). [CrossRef]
  46. X. Cui, D. Erni, and C. Hafner, “Optical forces on metallic nanoparticles induced by a photonic nanojet,” Opt. Express 16, 13560–13568 (2008). [CrossRef]
  47. F. Gori, “Collett-Wolf sources and multimode lasers,” Opt. Commun. 34, 301–305 (1980). [CrossRef]
  48. S. V. Boriskina, “Theoretical prediction of a dramatic q-factor enhancement and degeneracy removal of whispering gallery modes in symmetrical photonic molecules,” Opt. Lett. 31, 338–340 (2006). [CrossRef]
  49. S. V. Boriskina, T. M. Benson, and P. Sewell, “Photonic molecules made of matched and mismatched microcavities: new functionalities of microlasers and optoelectronic components,” Proc. SPIE 6452, 64520X (2007).
  50. S. Boriskina, “Photonic molecules and spectral engineering,” in Photonic Microresonator Research and Applications, I. Chremmos, O. Schwelb, and N. Uzunoglu, eds., Vol. 156 of Springer Series in Optical Sciences (Springer, 2010), pp. 393–421.
  51. H. van de Hulst, Light Scattering by Small Particles (Dover, 1981).
  52. Z. Chen, A. Taflove, and V. Backman, “Photonic nanojet enhancement of backscattering of light by nanoparticles: a potential novel visible-light ultramicroscopy technique,” Opt. Express 12, 1214–1220 (2004). [CrossRef]
  53. M. K. Chin, D. Y. Chu, and S.-T. Ho, “Estimation of the spontaneous emission factor for microdisk lasers via the approximation of whispering gallery modes,” J. Appl. Phys. 75, 3302–3307 (1994). [CrossRef]
  54. F. Valdivia-Valero and M. Nieto-Vesperinas, “Composites of resonant dielectric rods: a test of their behavior as metamaterial refractive elements,” Photon. Nanostruct. Fundam. Applic. 10, 423–434 (2012).
  55. F. Valdivia-Valero and M. Nieto-Vesperinas, “Optical forces on cylinders near subwavelength slits: effects of extraordinary transmission and excitation of Mie resonances,” Opt. Express 20, 13368–13389 (2012). [CrossRef]
  56. F. J. Valdivia-Valero and M. Nieto-Vesperinas, “Resonance excitation and light concentration in sets of dielectric nanocylinders in front of a subwavelength aperture. effects on extraordinary transmission,” Opt. Express 18, 6740–6754 (2010). [CrossRef]
  57. F. J. Valdivia-Valero and M. Nieto-Vesperinas, “Propagation of particle plasmons in sets of metallic nanocylinders at the exit of subwavelength slits,” J. Nanophoton. 5, 053520 (2011). [CrossRef]
  58. S. V. Boriskina, “Spectrally engineered photonic molecules as optical sensors with enhanced sensitivity: a proposal and numerical analysis,” J. Opt. Soc. Am. B 23, 1565–1573 (2006). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited