OSA's Digital Library

Journal of the Optical Society of America A

Journal of the Optical Society of America A

| OPTICS, IMAGE SCIENCE, AND VISION

  • Editor: Franco Gori
  • Vol. 31, Iss. 3 — Mar. 1, 2014
  • pp: 644–651

Focusing of vortex beams: Lommel treatment

C. J. R. Sheppard  »View Author Affiliations


JOSA A, Vol. 31, Issue 3, pp. 644-651 (2014)
http://dx.doi.org/10.1364/JOSAA.31.000644


View Full Text Article

Enhanced HTML    Acrobat PDF (1295 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Focusing of vortex beams by a lens with circular aperture in the paraxial scalar Debye regime is analyzed. The amplitude in the focal region can be expressed naturally in terms of higher order Lommel functions of two variables. Using recurrence relationships, these can then be expressed in terms of low-order Lommel functions. The phase variation in the focal region is investigated, showing some interesting behavior of the Gouy phase anomaly.

© 2014 Optical Society of America

OCIS Codes
(050.1960) Diffraction and gratings : Diffraction theory
(110.2990) Imaging systems : Image formation theory
(260.1960) Physical optics : Diffraction theory
(050.4865) Diffraction and gratings : Optical vortices

ToC Category:
Diffraction and Gratings

History
Original Manuscript: October 7, 2013
Manuscript Accepted: January 14, 2014
Published: February 25, 2014

Citation
C. J. R. Sheppard, "Focusing of vortex beams: Lommel treatment," J. Opt. Soc. Am. A 31, 644-651 (2014)
http://www.opticsinfobase.org/josaa/abstract.cfm?URI=josaa-31-3-644


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. E. Lommel, “Die Beugungserscheinungen einer kreisrunden Oeffnung und eines kreisrunden Schirmschens theoretisch und experimentell Bearbeitet,” Abh. Bayer. Akad. 15, 233–328 (1885).
  2. M. Born and E. Wolf, Principles of Optics, 5th ed. (Pergamon, 1975).
  3. E. Wolf, “Light distribution near focus in an error-free diffraction image,” Proc. R. Soc. A 204, 533–548 (1951). [CrossRef]
  4. E. H. Linfoot and E. Wolf, “Phase distribution near focus in an aberration-free diffraction image,” Proc. Phys. Soc. Sect. B 69, 823–832 (1956). [CrossRef]
  5. E. H. Linfoot and E. Wolf, “Diffraction images in systems with an annular aperture,” Proc. Phys. Soc. Sect. B 66, 145–149 (1953). [CrossRef]
  6. Z. L. Horváth and Z. S. Bor, “Focusing of truncated Gaussian beams,” Opt. Commun. 222, 51–68 (2003). [CrossRef]
  7. Y. Li and E. Wolf, “Three-dimensional intensity distribution near the focus in systems of different Fresnel numbers,” J. Opt. Soc. Am. A 1, 801–808 (1984). [CrossRef]
  8. J. F. Nye and M. Berry, “Dislocations of wave-fronts,” Proc. R. Soc. A 336, 165–190 (1974). [CrossRef]
  9. V. Y. Bazhenov, M. S. Soskin, and M. V. Vasnetsov, “Screw dislocations in light wave-fronts,” J. Mod. Opt. 39, 985–990 (1992). [CrossRef]
  10. G. Indebetouw, “Optical vortices and their applications,” J. Mod. Opt. 40, 73–87 (1993). [CrossRef]
  11. I. Freund, N. Shvartsman, and V. Freilikher, “Optical dislocation networks in highly random media,” Opt. Commun. 101, 247–264 (1993). [CrossRef]
  12. N. Heckenberg, R. McDuff, C. P. Smith, and H. Rubinstein-Dunlop, “Laser beams with phase singularities,” Opt. Quantum Electron. 24, S951–S962 (1992). [CrossRef]
  13. M. Totzeck and H. J. Tiziani, “Phase-singularities in 2D diffraction fields and interference microscopy,” Opt. Commun. 138, 365–382 (1997). [CrossRef]
  14. H. He, M. E. J. Friese, N. R. Heckenberg, and H. Rubinsztein-Dunlop, “Direct observation of transfer of angular-momentum to absorbing particles from a laser-beam with a phase singularity,” Phys. Rev. Lett. 75, 826–829 (1995). [CrossRef]
  15. T. A. Klar, E. Engel, and S. W. Hell, “Breaking Abbe’s diffraction resolution limit in fluorescence microscopy with stimulated emission depletion beams of various shapes,” Phys. Rev. E 64, 066613 (2001). [CrossRef]
  16. D. Ganic, X. Gan, and M. Gu, “Focusing of doughnut beams by a high numerical-aperture objective in free space,” Opt. Express 11, 2747–2752 (2003). [CrossRef]
  17. C. J. R. Sheppard, “Polarization of beams and highly focused waves,” presented at the ICO Topical Meeting on Polarization Optics, Polvijärvi, Finland, 2003.
  18. L. E. Helseth, “Optical vortices in focal regions,” Opt. Commun. 229, 85–91 (2004). [CrossRef]
  19. C. J. R. Sheppard and P. Török, “Electromagnetic field in the focal region of an electric dipole wave,” Optik 104, 175–177 (1997).
  20. C. J. R. Sheppard and S. Saghafi, “Transverse-electric and transverse-magnetic beam modes beyond the paraxial approximation,” Opt. Lett. 24, 1543–1545 (1999). [CrossRef]
  21. S. Quabis, R. Dorn, M. Eberler, O. Glockl, and G. Leuchs, “Focusing light to a tighter spot,” Opt. Commun. 179, 1–7 (2000). [CrossRef]
  22. K. S. Youngworth and T. G. Brown, “Focusing of high numerical aperture cylindrical-vector beams,” Opt. Express 7, 77–87 (2000). [CrossRef]
  23. W. Tang, E. Yew, and C. Sheppard, “Polarization conversion in confocal microscopy with radially polarized illumination,” Opt. Lett. 34, 2147–2149 (2009). [CrossRef]
  24. C. J. R. Sheppard and H. J. Matthews, “Imaging in high aperture optical systems,” J. Opt. Soc. Am. A 4, 1354–1360 (1987). [CrossRef]
  25. A. Gray and G. B. Mathews, A Treatise on Bessel Functions and Their Applications to Physics (Macmillan, 1895).
  26. J. Walker, The Analytical Theory of Light (C. J. Clay and Sons, 1904).
  27. G. N. Watson, A Treatise on the Theory of Bessel Functions (Cambridge University, 1980).
  28. I. S. Gradstein and I. M. Ryshik, Tables of Series, Products, and Integrals (Harri Deutsch, Thun, 1981).
  29. J. Boersma, “On the computation of Lommel’s functions of two variables,” Math. Comp. 16, 232–238 (1962).
  30. G. Goubau and F. Schwering, “On the guided propagation of electromagnetic wave beams,” IEEE Trans. Antennas Propag. 9, 248–256 (1961). [CrossRef]
  31. D. L. Fried and J. L. Vaughn, “Branch cuts in the phase function,” Appl. Opt. 31, 2865–2882 (1992). [CrossRef]
  32. D. C. Ghiglia and M. D. Pritt, Two Dimensional Phase Unwrapping: Theory, Algorithms and Software (Wiley, 1998).
  33. G. Farnell, “Calculated intensity and phase distribution in the image space of a microwave lens,” Can. J. Phys. 35, 777–783 (1957). [CrossRef]
  34. G. Farnell, “Measured phase distribution in the image space of a microwave lens,” Can. J. Phys. 36, 935–943 (1958). [CrossRef]
  35. J. C. Dainty, “The image of a point for an aberration free lens with a circular pupil,” Opt. Commun. 1, 176–178 (1969). [CrossRef]
  36. V. V. Kotlyar, A. A. Almazov, S. N. Khonina, V. A. Soifer, H. Elfstrom, and J. Turunen, “Generation of phase singularity through diffracting a plane or Gaussian beam by a spiral phase plate,” J. Opt. Soc. Am. A 22, 849–861 (2005). [CrossRef]
  37. C. J. R. Sheppard, “Cylindrical lenses: focusing and imaging: a review [Invited],” Appl. Opt. 52, 538–541 (2013). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited