OSA's Digital Library

Journal of the Optical Society of America A

Journal of the Optical Society of America A

| OPTICS, IMAGE SCIENCE, AND VISION

  • Editor: Franco Gori
  • Vol. 31, Iss. 4 — Apr. 1, 2014
  • pp: 765–772

Effects of aberrations in spatiotemporal focusing of ultrashort laser pulses

Bangshan Sun, Patrick S. Salter, and Martin J. Booth  »View Author Affiliations


JOSA A, Vol. 31, Issue 4, pp. 765-772 (2014)
http://dx.doi.org/10.1364/JOSAA.31.000765


View Full Text Article

Enhanced HTML    Acrobat PDF (1379 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Spatiotemporal focusing, or simultaneous spatial and temporal focusing (SSTF), has already been adopted for various applications in microscopy, photoactivation for biological studies, and laser fabrication. We investigate the effects of aberrations on focus formation in SSTF, in particular, the effects of phase aberrations related to low-order Zernike modes and a refractive index mismatch between the immersion medium and sample. By considering a line focus, we are able to draw direct comparison between the performance of SSTF and conventional spatial focusing (SF). Wide-field SSTF is also investigated and is found to be much more robust to aberrations than either line SSTF or SF. These results show the sensitivity of certain focusing methods to specific aberrations, and can inform on the necessity and benefit of aberration correction.

© 2014 Optical Society of America

OCIS Codes
(110.0180) Imaging systems : Microscopy
(140.3390) Lasers and laser optics : Laser materials processing
(180.6900) Microscopy : Three-dimensional microscopy
(220.1000) Optical design and fabrication : Aberration compensation
(220.1010) Optical design and fabrication : Aberrations (global)
(220.4610) Optical design and fabrication : Optical fabrication

ToC Category:
Optical Design and Fabrication

History
Original Manuscript: January 10, 2014
Manuscript Accepted: January 30, 2014
Published: March 18, 2014

Virtual Issues
Vol. 9, Iss. 6 Virtual Journal for Biomedical Optics

Citation
Bangshan Sun, Patrick S. Salter, and Martin J. Booth, "Effects of aberrations in spatiotemporal focusing of ultrashort laser pulses," J. Opt. Soc. Am. A 31, 765-772 (2014)
http://www.opticsinfobase.org/josaa/abstract.cfm?URI=josaa-31-4-765


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. G. Zhu, J. van Howe, M. Durst, W. Zipfel, and C. Xu, “Simultaneous spatial and temporal focusing of femtosecond pulses,” Opt. Express 13, 2153–2159 (2005). [CrossRef]
  2. M. E. Durst, G. Zhu, and C. Xu, “Simultaneous spatial and temporal focusing in nonlinear microscopy,” Opt. Commun. 281, 1796–1805 (2008). [CrossRef]
  3. D. Oron and Y. Silberberg, “Harmonic generation with temporally focused ultrashort pulses,” J. Opt. Soc. Am. B 22, 2660–2663 (2005). [CrossRef]
  4. D. Oron and Y. Silberberg, “Spatiotemporal coherent control using shaped, temporally focused pulses,” Opt. Express 13, 9903–9908 (2005). [CrossRef]
  5. D. Oron, E. Tal, and Y. Silberberg, “Scanningless depth-resolved microscopy,” Opt. Express 13, 1468–1476 (2005). [CrossRef]
  6. E. Tal, D. Oron, and Y. Silberberg, “Improved depth resolution in video-rate line-scanning multiphoton microscopy using temporal focusing,” Opt. Lett. 30, 1686–1688 (2005). [CrossRef]
  7. M. E. Durst, G. Zhu, and C. Xu, “Simultaneous spatial and temporal focusing for axial scanning,” Opt. Express 14, 12243–12254 (2006). [CrossRef]
  8. A. Vaziri, J. Tang, H. Shroff, and C. V. Shank, “Multilayer three-dimensional super resolution imaging of thick biological samples,” Proc. Natl. Acad. Sci. USA 105, 20221–20226 (2008). [CrossRef]
  9. E. Papagiakoumou, V. de Sars, D. Oron, and V. Emiliani, “Patterned two-photon illumination by spatiotemporal shaping of ultrashort pulses,” Opt. Express 16, 22039–22047 (2008). [CrossRef]
  10. E. Papagiakoumou, V. de Sars, V. Emiliani, and D. Oron, “Temporal focusing with spatially modulated excitation,” Opt. Express 17, 5391–5401 (2009). [CrossRef]
  11. E. Yew, C. J. Sheppard, and P. T. So, “Temporally focused wide-field two-photon microscopy: paraxial to vectorial,” Opt. Express 21, 12951–12963 (2013). [CrossRef]
  12. F. He, H. Xu, Y. Cheng, J. Ni, H. Xiong, Z. Xu, K. Sugioka, and K. Midorikawa, “Fabrication of microfluidic channels with a circular cross section using spatiotemporally focused femtosecond laser pulses,” Opt. Lett. 35, 1106–1108 (2010). [CrossRef]
  13. D. N. Vitek, E. Block, Y. Bellouard, D. E. Adams, S. Backus, D. Kleinfeld, C. G. Durfee, and J. A. Squier, “Spatio-temporally focused femtosecond laser pulses for nonreciprocal writing in optically transparent materials,” Opt. Express 18, 24673–24678 (2010). [CrossRef]
  14. D. N. Vitek, D. E. Adams, A. Johnson, P. S. Tsai, S. Backus, C. G. Durfee, D. Kleinfeld, and J. A. Squier, “Temporally focused femtosecond laser pulses for low numerical aperture micromachining through optically transparent materials,” Opt. Express 18, 18086–18094 (2010). [CrossRef]
  15. D. Kim and P. T. So, “High-throughput three-dimensional lithographic microfabrication,” Opt. Lett. 35, 1602–1604 (2010). [CrossRef]
  16. Y.-C. Li, L.-C. Cheng, C.-Y. Chang, C.-H. Lien, P. J. Campagnola, and S.-J. Chen, “Fast multiphoton microfabrication of freeform polymer microstructures by spatiotemporal focusing and patterned excitation,” Opt. Express 20, 19030–19038 (2012). [CrossRef]
  17. R. Stoian, J. Colombier, C. Mauclair, G. Cheng, M. Bhuyan, P. Velpula, and P. Srisungsitthisunti, “Spatial and temporal laser pulse design for material processing on ultrafast scales,” Appl. Phys. A 114, 119–127 (2014). [CrossRef]
  18. M. J. Booth, M. Neil, and T. Wilson, “Aberration correction for confocal imaging in refractive-index-mismatched media,” J. Microsc. 192, 90–98 (1998). [CrossRef]
  19. M. J. Booth, “Adaptive optics in microscopy,” Phil. Trans. R. Soc. A 365, 2829–2843 (2007). [CrossRef]
  20. A. Jesacher and M. J. Booth, “Parallel direct laser writing in three dimensions with spatially dependent aberration correction,” Opt. Express 18, 21090–21099 (2010). [CrossRef]
  21. A. Jesacher, G. D. Marshall, T. Wilson, and M. J. Booth, “Adaptive optics for direct laser writing with plasma emission aberration sensing,” Opt. Express 18, 656–661 (2010). [CrossRef]
  22. B. P. Cumming, A. Jesacher, M. J. Booth, T. Wilson, and M. Gu, “Adaptive aberration compensation for three-dimensional micro-fabrication of photonic crystals in lithium niobate,” Opt. Express 19, 9419–9425 (2011). [CrossRef]
  23. R. D. Simmonds, P. S. Salter, A. Jesacher, and M. J. Booth, “Three dimensional laser microfabrication in diamond using a dual adaptive optics system,” Opt. Express 19, 24122–24128 (2011). [CrossRef]
  24. P. Salter and M. Booth, “Focussing over the edge: adaptive subsurface laser fabrication up to the sample face,” Opt. Express 20, 19978–19989 (2012). [CrossRef]
  25. E. Hecht and A. Zajac, Optics (Addison-Wesley, 2002).
  26. U. Fuchs, U. Zeitner, and A. Tünnermann, “Ultra-short pulse propagation in complex optical systems,” Opt. Express 13, 3852–3861 (2005). [CrossRef]
  27. Y. M. Engelberg and S. Ruschin, “Fast method for physical optics propagation of high-numerical-aperture beams,” J. Opt. Soc. Am. A 21, 2135–2145 (2004). [CrossRef]
  28. A. Vaziri and C. V. Shank, “Ultrafast widefield optical sectioning microscopy by multifocal temporal focusing,” Opt. Express 18, 19645–19655 (2010). [CrossRef]
  29. O. Therrien, B. Aubé, S. Pagès, P. De Koninck, and D. Côté, “Wide-field multiphoton imaging of cellular dynamics in thick tissue by temporal focusing and patterned illumination,” Biomed. Opt. Express 2, 696–704 (2011). [CrossRef]
  30. L.-C. Cheng, C.-Y. Chang, C.-Y. Lin, K.-C. Cho, W.-C. Yen, N.-S. Chang, C. Xu, C. Y. Dong, and S.-J. Chen, “Spatiotemporal focusing-based widefield multiphoton microscopy for fast optical sectioning,” Opt. Express 20, 8939–8948 (2012). [CrossRef]
  31. M. Born and E. Wolf, Principles of Optics (Cambridge University, 2010).
  32. P. Török, P. Varga, Z. Laczik, and G. Booker, “Electromagnetic diffraction of light focused through a planar interface between materials of mismatched refractive indices: an integral representation,” J. Opt. Soc. Am. A 12, 325–332 (1995). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited