OSA's Digital Library

Journal of the Optical Society of America A

Journal of the Optical Society of America A

| OPTICS, IMAGE SCIENCE, AND VISION

  • Editor: Franco Gori
  • Vol. 31, Iss. 4 — Apr. 1, 2014
  • pp: 783–789

Electromagnetic interaction with two eccentric spheres

Fabio Mangini, Nicola Tedeschi, Fabrizio Frezza, and Ari Sihvola  »View Author Affiliations


JOSA A, Vol. 31, Issue 4, pp. 783-789 (2014)
http://dx.doi.org/10.1364/JOSAA.31.000783


View Full Text Article

Enhanced HTML    Acrobat PDF (813 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

In this paper, we consider the interaction of an electromagnetic field with two eccentric spheres. We propose a quasi-static approach in order to calculate the scattered field and the polarizability and the effective permittivity of the eccentric spheres. We analyze the behavior of the scattering parameters as a function of the dimension and position of the spherical inclusions. Moreover, we consider the case of plasmonic spheres and study the behavior of the plasmon resonances for different reciprocal positions of the two spheres.

© 2014 Optical Society of America

OCIS Codes
(260.2110) Physical optics : Electromagnetic optics
(260.5740) Physical optics : Resonance
(290.5850) Scattering : Scattering, particles
(050.2065) Diffraction and gratings : Effective medium theory

ToC Category:
Physical Optics

History
Original Manuscript: November 12, 2013
Revised Manuscript: February 11, 2014
Manuscript Accepted: February 14, 2014
Published: March 19, 2014

Citation
Fabio Mangini, Nicola Tedeschi, Fabrizio Frezza, and Ari Sihvola, "Electromagnetic interaction with two eccentric spheres," J. Opt. Soc. Am. A 31, 783-789 (2014)
http://www.opticsinfobase.org/josaa/abstract.cfm?URI=josaa-31-4-783


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. A. Aden and M. Kerker, “Scattering of electromagnetic waves from two concentric spheres,” J. Appl. Phys. 22, 1242–1246 (1951). [CrossRef]
  2. J. Rheinstein, “Scattering of electromagnetic waves from dielectric coated conducting spheres,” IEEE Trans. Antennas Propag. 12, 334–340 (1964). [CrossRef]
  3. J. S. Kim and J. K. Chang, “Light scattering by two concentric optically active spheres: I. General theory,” J. Korean Phys. Soc. 45, 352–365 (2004).
  4. I. Arnaoudov and G. Venkov, “The transmission acoustic scattering problem for bi-spheres in low frequency regime,” Rend. Istit. Mat. Univ. Trieste XXXVIII, 73–93 (2006).
  5. J. McNew, R. Lavarello, and W. D. O’Brien, “Sound scattering from two concentric fluid spheres,” J. Acoust. Soc. Am. 122, 2968–2975 (2007). [CrossRef]
  6. R. Dempsey, T. J. Gallagher, and B. K. P. Scaife, “Computation of the potential distribution for a composite dielectric sphere with a noncentral spherical inclusion polarized by a static uniform external field,” in 10th International Conference on Conduction and Breakdown in Dielectric Liquids (1990), pp. 243–247.
  7. J. G. Fikioris and N. K. Uzunoglu, “Scattering from an eccentrically stratified dielectric sphere,” J. Opt. Soc. Am. 69, 1359–1366 (1979). [CrossRef]
  8. F. Borghese, P. Denti, R. Saija, and O. I. Sindoni, “Optical properties of spheres containing a spherical eccentric inclusion,” J. Opt. Soc. Am. A 9, 1327–1335 (1992). [CrossRef]
  9. J. A. Roumeliotis, N. B. Kakogiannos, and J. D. Kanellopoulos, “Scattering from a sphere of small radius embedded into a dielectric one,” IEEE Trans. Microwave Theor. Tech. 43, 155–168 (1995). [CrossRef]
  10. K. A. Fuller, “Scattering and absorption cross section of compounded spheres. III. Spheres containing arbitrarily located spherical inhomogeneities,” J. Opt. Soc. Am. A 12, 893–904 (1995). [CrossRef]
  11. G. Gouesbet and G. Grhan, “Generalized Lorenz-Mie theory for a sphere with an eccentrically located spherical inclusion,” J. Mod. Opt. 47, 821–837 (2000). [CrossRef]
  12. R. Nozawa, “Bipolar expansion of screened Coulomb potentials, Helmholtz’ solid harmonics, and their addition theorems,” J. Math. Phys. 7, 1841–1860 (1966). [CrossRef]
  13. M. J. Caola, “Solid harmonics and their addition theorems,” J. Phys. A 11, L23–L25 (1978). [CrossRef]
  14. K. Sasihithlu and A. Narayanaswamy, “Convergence of vectorial spherical wave expansion method applied to near-field radiative transfer,” Opt. Express 19, A772–A785 (2011). [CrossRef]
  15. N. C. Skaropoulos, M. P. Ioannidou, and D. P. Chrissoulidis, “Indirect mode-matching solution to scattering from a dielectric sphere with an eccentric inclusion,” J. Opt. Soc. Am. A 11, 1859–1866 (1994). [CrossRef]
  16. A. P. Moneda and D. P. Chrissoulidis, “Dyadic Green’s function of a sphere with an eccentric spherical inclusion,” J. Opt. Soc. Am. A 24, 1695–1703 (2007). [CrossRef]
  17. G. Han, Y. Han, J. Liu, and Y. Zhang, “Scattering of an eccentric sphere arbitrarily located in a shaped beam,” J. Opt. Soc. Am. B 25, 2064–2072 (2008). [CrossRef]
  18. B. Yan, X. Han, and K. F. Ren, “Scattering of a shaped beam by a spherical particle with an eccentric spherical inclusion,” J. Opt. Pure Appl. Opt. 11, 015705 (2009).
  19. F. Vervelidou and D. Chrissoulidis, “Scattering of a pulsed wave by a sphere with an eccentric spherical inclusion,” J. Opt. Soc. Am. A 29, 605–616 (2012). [CrossRef]
  20. F. Borghese, P. Denti, and R. Saija, “Optical properties of spheres containing several spherical inclusions,” Appl. Opt. 33, 484–493 (1994). [CrossRef]
  21. M. P. Ioannidou and D. P. Chrissoulidis, “Electromagnetic-wave scattering by a sphere with multiple spherical inclusions,” J. Opt. Soc. Am. A 19, 505–512 (2002). [CrossRef]
  22. G. Videen, D. Ngo, P. Chýlek, and R. G. Pinnick, “Light scattering from a sphere with an irregular inclusion,” J. Opt. Soc. Am. A 12, 922–928 (1995). [CrossRef]
  23. J. A. Roumeliotis, J. G. Fikioris, and G. P. Gounaris, “Electromagnetic scattering from an eccentrically coated infinite metallic cylinder,” Appl. Opt. 51, 4488–4493 (1980).
  24. A. A. Kishk, R. P. Parrikar, and A. Z. Elsherbeni, “Electromagnetic scattering from an eccentric multilayered circular cylinder,” IEEE Trans. Antennas Propag. 40, 295–303 (1992). [CrossRef]
  25. J. W. Meijs and M. J. Peters, “The EEG and MEG, using a model of eccentric spheres to describe the head,” IEEE Trans. Biomed. Eng. BME-34, 913–920 (1987). [CrossRef]
  26. B. N. Cuffin, “Eccentric sphere models of the head,” IEEE Trans. Biomed. Eng. 38, 871–878 (1991). [CrossRef]
  27. Y. Rudy, “The eccentric spheres model as the basis for a study of the role of geometry and inhomogeneities in electrocardiography,” IEEE Trans. Biomed. Eng. BME-26, 392–399 (1979). [CrossRef]
  28. B. Miu and W. Yawei, “Scattering analysis for eccentric-sphere model of single-nuclear cell,” in 2011 Symposium on Photonics and Optoelectronics (SOPO) (2011), pp. 1–4.
  29. S. Xing, Y. Feng, Y. Y. Tay, T. Chen, J. Xu, M. Pan, J. He, H. H. Hng, Q. Yan, and H. Chen, “Reducing the symmetry of bimetallic Au@Ag nanoparticles by exploiting eccentric polymer shells,” J. Am. Chem. Soc. 132, 9537–9539 (2010). [CrossRef]
  30. Z. W. Seh, S. Liu, S. Y. Zhang, M. S. Bharathi, H. Ramanarayan, M. Low, K. W. Shah, Y. W. Zhang, and M. Y. Han, “Anisotropic growth of titania onto various gold nanostructures: synthesis, theoretical understanding, and optimization for catalysis,” Angew. Chem. Int. Ed. 50, 10140–10143 (2011). [CrossRef]
  31. J. Geng, K. Li, K. Y. Pu, D. Ding, and B. Liu, “Conjugated polymer and gold nanoparticle co-loaded PLGA nanocomposites with eccentric internal nanostructure for dual-modal targeted cellular imaging,” Small 8, 2421–2429 (2012). [CrossRef]
  32. W. P. Li, V. Shanmugam, C. C. Huang, G. D. Huang, Y. K. Huang, S. H. Chiu, and C. S. Yeh, “Eccentric inorganic-polymeric nanoparticles formation by thermal induced cross-linked esterification and conversion of eccentricity to raspberry-like Janus,” Chem. Commun. 49, 1609–1611 (2013). [CrossRef]
  33. P. Chýlek and G. Videen, “Scattering by a composite sphere and effective medium approximations,” Opt. Commun. 146, 15–20 (1998). [CrossRef]
  34. B. Yun, Z. Wang, G. Hu, and Y. Cui, “Theoretical studies on the near field properties of non-concentric core–shell nanoparticle dimers,” Opt. Commun. 283, 2947–2952 (2010). [CrossRef]
  35. O. Pea-Rodríguez and U. Pal, “Enhanced plasmonic behavior of bimetallic (Ag-Au) multilayered spheres,” Nanoscale Res. Lett. 6, 279–283 (2011). [CrossRef]
  36. C. Liu, C. C. Mi, and B. Q. Li, “The plasmon resonance of a multilayered gold nanoshell and its potential bioapplications,” IEEE Trans. Nanotechnol. 10, 797–805 (2011). [CrossRef]
  37. H. Wang, D. W. Brandl, P. Nordlander, and N. J. Halas, “Plasmonic nanostructures: artificial molecules,” Acc. Chem. Res. 40, 53–62 (2007). [CrossRef]
  38. J. A. Stratton, Electromagnetic Theory (McGraw-Hill, 1941).
  39. J. D. Jackson, Classical Electrodynamics, 3rd ed. (Hamilton Printing Company, 1998).
  40. P. M. Morse and H. Feshbach, Methods of Theoretical Physics, Part II (McGraw-Hill, 1953).
  41. C. F. Bohren and D. R. Huffman, Absorption and Scattering of Light by Small Particles (Wiley, 1940).
  42. A. Sihvola, Electromagnetic Mixing Formulas and Applications (The Institution of Electrical Engineers, 1999).
  43. A. Sihvola, “Character of surface plasmons in layered spherical structures,” Progress Electromagn. Res. 62, 317–331 (2006).
  44. Y. Zeng, Q. Wu, and D. H. Werner, “Electrostatic theory for designing lossless negative permittivity metamaterials,” Opt. Express 35, 1431–1433 (2010).
  45. U. K. Chettiar and N. Engheta, “Internal homogenization: effective permittivity of a coated sphere,” Opt. Express 20, 22976–22986 (2012). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited