OSA's Digital Library

Journal of the Optical Society of America A

Journal of the Optical Society of America A


  • Editor: Franco Gori
  • Vol. 31, Iss. 4 — Apr. 1, 2014
  • pp: 802–807

Study of polarization properties of fiber-optics probes with use of a binary phase plate

S. V. Alferov, S. N. Khonina, and S. V. Karpeev  »View Author Affiliations

JOSA A, Vol. 31, Issue 4, pp. 802-807 (2014)

View Full Text Article

Enhanced HTML    Acrobat PDF (557 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We conduct a theoretical and experimental study of the distribution of the electric field components in the sharp focal domain when rotating a zone plate with a π -phase jump placed in the focused beam. Comparing the theoretical and experimental results for several kinds of near-field probes, an analysis of the polarization sensitivity of different types of metal-coated aperture probes is conducted. It is demonstrated that with increasing diameter of the non-metal-coated tip part there occurs an essential redistribution of sensitivity in favor of the transverse electric field components and an increase of the probe’s energy throughput.

© 2014 Optical Society of America

OCIS Codes
(180.4243) Microscopy : Near-field microscopy
(050.4865) Diffraction and gratings : Optical vortices

ToC Category:
Diffraction and Gratings

Original Manuscript: December 17, 2013
Revised Manuscript: February 11, 2014
Manuscript Accepted: February 13, 2014
Published: March 27, 2014

S. V. Alferov, S. N. Khonina, and S. V. Karpeev, "Study of polarization properties of fiber-optics probes with use of a binary phase plate," J. Opt. Soc. Am. A 31, 802-807 (2014)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. L. Novotny, M. R. Beversluis, K. S. Youngworth, and T. G. Brown, “Longitudinal field modes probed by single molecules,” Phys. Rev. Lett. 86, 5251–5254 (2001). [CrossRef]
  2. X. S. Xie and R. C. Dunn, “Probing single molecule dynamics,” Science 265, 361–364 (1994). [CrossRef]
  3. R. Dorn, S. Quabis, and G. Leuchs, “Sharper focus for a radially polarized light beam,” Phys. Rev. Lett. 91, 233901 (2003). [CrossRef]
  4. K. Kitamura, K. Sakai, and S. Noda, “Sub-wavelength focal spot with long depth of focus generated by radially polarized, narrow-width annular beam,” Opt. Express 18, 4518–4525 (2010). [CrossRef]
  5. B. Hao and J. Leger, “Experimental measurement of longitudinal component in the vicinity of focused radially polarized beam,” Opt. Express 15, 3550–3556 (2007). [CrossRef]
  6. L. Novotny and S. J. Stranick, “Longitudinal field modes probed by single molecules,” Annu. Rev. Phys. Chem. 57, 303–331 (2006). [CrossRef]
  7. J. Wang, Q. Wang, and M. Zhang, “Development and prospect of near-field optical measurements and characterizations,” Front. Optoelectron. 5, 171–181 (2012). [CrossRef]
  8. B. Jia, X. Gan, and M. Gu, “Direct observation of a pure focused evanescent field of a high numerical aperture objective lens by scanning near-field optical microscopy,” Appl. Phys. Lett. 86, 131110 (2005). [CrossRef]
  9. A. Bouhelier, F. Ignatovich, A. Bruyant, C. Huang, G. Colas des Francs, J.-C. Weeber, A. Dereux, G. P. Wiederrecht, and L. Novotny, “Surface plasmon interference excited by tightly focused laser beams,” Opt. Lett. 32, 2535–2537 (2007). [CrossRef]
  10. W. Chen and Q. Zhan, “Realization of an evanescent Bessel beam via surface plasmon interference excited by a radially polarized beam,” Opt. Lett. 34, 722–724 (2009). [CrossRef]
  11. V. V. Kotlyar, S. S. Stafeev, Y. Liu, L. O’Faolain, and A. A. Kovalev, “Analysis of the shape of a subwavelength focal spot for the linearly polarized light,” Appl. Opt. 52, 330–339 (2013). [CrossRef]
  12. A. V. Zayats and V. Sandoghdar, “Apertureless near-field optical microscopy via local second-harmonic generation,” J. Microsc. 202, 94–99 (2001). [CrossRef]
  13. A. Bouhelier, M. R. Beversluis, and L. Novotny, “Near-field scattering of longitudinal fields,” Appl. Phys. Lett. 82, 4596–4598 (2003). [CrossRef]
  14. E. Descrovi, L. Vaccaro, L. Aeschimann, W. Nakagawa, U. Staufer, and H.-P. Herzig, “Optical properties of microfabricated fully-metal-coated near-field probes in collection mode,” J. Opt. Soc. Am. A 22, 1432–1441 (2005). [CrossRef]
  15. P. Tortora, E. Descrovi, L. Aeschimann, L. Vaccaro, H.-P. Herzig, and R. Dandliker, “Selective coupling of HE11 and TM01 modes into microfabricated fully metal-coated quartz probes,” Ultramicroscopy 107, 158–165 (2007). [CrossRef]
  16. M. Mivelle, I. A. Ibrahim, F. Baida, G. W. Burr, D. Nedeljkovic, D. Charraut, J.-Y. Rauch, R. Salut, and T. Grosjean, “Bowtie nano-aperture as interface between near-fields and a single-mode fiber,” Opt. Express 18, 15964–15974 (2010). [CrossRef]
  17. W. Bao, M. Staffaroni, J. Bokor, M. B. Salmeron, E. Yablonovitch, S. Cabrini, A. Weber-Bargioni, and P. J. Schuck, “Plasmonic near-field probes: a comparison of the campanile geometry with other sharp tips,” Opt. Express 21, 8166–8176 (2013). [CrossRef]
  18. L. Novotny, E. J. Sanchez, and X. S. Xie, “Near-field imaging using metal tips illuminated by higher-order Hermite-Gaussian beams,” Ultramicroscopy 71, 21–29 (1998). [CrossRef]
  19. S. N. Khonina and S. G. Volotovsky, “Controlling the contribution of the electric field components to the focus of a high-aperture lens using binary phase structures,” J. Opt. Soc. Am. A 27, 2188–2197 (2010). [CrossRef]
  20. B. Richards and E. Wolf, “Electromagnetic diffraction in optical systems. II. Structure of the image field in an aplanatic system,” Proc. R. Soc. A 253, 358–379 (1959).
  21. S. N. Khonina, N. L. Kazanskiy, and S. G. Volotovsky, “Influence of vortex transmission phase function on intensity distribution in the focal area of high-aperture focusing system,” Opt. Mem. Neural Netw. 20, 23–42 (2011). [CrossRef]
  22. S. N. Khonina, S. V. Alferov, and S. V. Karpeev, “Strengthening the longitudinal component of the sharply focused electric field by means of higher-order laser beams,” Opt. Lett. 38, 3223–3226 (2013). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1. Fig. 2. Fig. 3.
Fig. 4.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited