OSA's Digital Library

Journal of the Optical Society of America A

Journal of the Optical Society of America A

| OPTICS, IMAGE SCIENCE, AND VISION

  • Editor: Franco Gori
  • Vol. 31, Iss. 4 — Apr. 1, 2014
  • pp: A195–A207

Neurobiological hypothesis of color appearance and hue perception

Brian P. Schmidt, Maureen Neitz, and Jay Neitz  »View Author Affiliations


JOSA A, Vol. 31, Issue 4, pp. A195-A207 (2014)
http://dx.doi.org/10.1364/JOSAA.31.00A195


View Full Text Article

Enhanced HTML    Acrobat PDF (1340 KB) Open Access





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

De Valois and De Valois [Vis. Res. 33, 1053 (1993)] showed that to explain hue appearance, S-cone signals have to be combined with M versus L opponent signals in two different ways to produce red–green and yellow–blue axes, respectively. Recently, it has been shown that color appearance is normal for individuals with genetic mutations that block S-cone input to blue-ON ganglion cells. This is inconsistent with the De Valois hypothesis in which S-opponent konio-geniculate signals are combined with L-M signals at a third processing stage in cortex. Instead, here we show that color appearance, including individual differences never explained before, are predicted by a model in which S-cone signals are combined with L versus M signals in the outer retina.

© 2014 Optical Society of America

OCIS Codes
(330.0330) Vision, color, and visual optics : Vision, color, and visual optics
(330.1720) Vision, color, and visual optics : Color vision
(330.4060) Vision, color, and visual optics : Vision modeling

ToC Category:
Unique hues and color categories

History
Original Manuscript: October 3, 2013
Revised Manuscript: January 7, 2014
Manuscript Accepted: January 10, 2014
Published: February 12, 2014

Citation
Brian P. Schmidt, Maureen Neitz, and Jay Neitz, "Neurobiological hypothesis of color appearance and hue perception," J. Opt. Soc. Am. A 31, A195-A207 (2014)
http://www.opticsinfobase.org/josaa/abstract.cfm?URI=josaa-31-4-A195


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. L. M. Hurvich and D. Jameson, “An opponent-process theory of color vision,” Psycholog. Rev. 64, 384–404 (1957). [CrossRef]
  2. A. Stockman and D. H. Brainard, “Color vision mechanisms,” in Vision and Vision Optics, M. Bass, ed., 3rd ed. (McGraw-Hill, 2009), Chap. 11, pp. 1–104.
  3. R. G. Kuehni, “Variability in unique hue selection: a surprising phenomenon,” Color Res. Appl. 29, 158–162 (2004). [CrossRef]
  4. R. G. Kuehni, “Determination of unique hues using Munsell color chips,” Color Res. Appl. 26, 61–66 (2001). [CrossRef]
  5. G. Jordan and J. D. Mollon, “Rayleigh matches and unique green,” Vis. Res. 35, 613–620 (1995). [CrossRef]
  6. I. Abramov, J. Gordon, and H. Chan, “Color appearance in the peripheral retina: effects of stimulus size,” J. Opt. Soc. Am. A 8, 404–414 (1991). [CrossRef]
  7. I. Abramov and J. Gordon, “Seeing unique hues,” J. Opt. Soc. Am. A 22, 2143–2153 (2005). [CrossRef]
  8. J. Gordon and I. Abramov, “Color vision in the peripheral retina. II. Hue and saturation,” J. Opt. Soc. Am. 67, 202–207 (1977). [CrossRef]
  9. A. Valberg, “Unique hues: an old problem for a new generation,” Vis. Res. 41, 1645–1657 (2001). [CrossRef]
  10. E. Hering, Zur Lehre vom Lichtsinne. Sechs Mittheilungen an die Kaiserliche Akademie der Wissenschaften in Wien (Carl Gerolds Sohn, 1878).
  11. J. von Kries, “Die Gesichtsempfindungen,” in Handbuch der Physiologie der Mensche, W. A. Nagel, ed. (Vieweg, 1905), Chap. 3.
  12. G. E. Müller, Uber Die Farbenempfindungen. Psychophys. Unters (Barth, 1930).
  13. D. B. Judd, “Fundamental studies of color vision from 1860 to 1960,” Proc. Natl. Acad. Sci. USA 55, 1313–1330 (1966).
  14. R. L. De Valois, I. Abramov, and G. H. Jacobs, “Analysis of response patterns of LGN cells,” J. Opt. Soc. Am. 56, 966–977 (1966). [CrossRef]
  15. R. L. De Valois and K. De Valois, “A multi-stage color model,” Vis. Res. 33, 1053–1065 (1993). [CrossRef]
  16. B. Drum, “Hue signals from short- and middle-wavelength-sensitive cones,” J. Opt. Soc. Am. A 6, 153–156 (1989). [CrossRef]
  17. M. A. Webster, E. Miyahara, G. Malkoc, and V. E. Raker, “Variations in normal color vision. I. Cone-opponent axes,” J. Opt. Soc. Am. A 17, 1535–1544 (2000). [CrossRef]
  18. J. Neitz and M. Neitz, “Colour vision: the wonder of hue,” Curr. Biol. 18, R700–R702 (2008). [CrossRef]
  19. S. L. Guth, “Model for color vision and light adaptation,” J. Opt. Soc. Am. A 8, 976–993 (1991). [CrossRef]
  20. J. D. Mollon, “The origins of modern color science,” in The Science of Color, S. K. Shevell, ed., 2nd ed. (Elsevier, 2003).
  21. J. Krauskopf, D. R. Williams, and D. W. Heeley, “Cardinal directions of color space,” Vis. Res. 22, 1123–1131 (1982). [CrossRef]
  22. B. R. Conway, “Spatial structure of cone inputs to color cells in alert macaque primary visual cortex (V-1),” J. Neurosci. 21, 2768–2783 (2001).
  23. B. R. Conway and M. S. Livingstone, “Spatial and temporal properties of cone signals in alert macaque primary visual cortex,” J. Neurosci. 26, 10826–10846 (2006). [CrossRef]
  24. A. P. Mariani, “Bipolar cells in monkey retina selective for the cones likely to be blue-sensitive,” Nature 308, 184–186 (1984). [CrossRef]
  25. N. Vardi, R. Duvoisin, G. Wu, and P. Sterling, “Localization of mGluR6 to dendrites of ON bipolar cells in primate retina,” J. Comp. Neurol. 423, 402–412 (2000). [CrossRef]
  26. T. P. Dryja, T. L. Mcgee, E. L. Berson, G. A. Fishman, M. A. Sandberg, K. R. Alexander, D. J. Derlacki, and A. S. Rajagopalan, “Night blindness and abnormal cone electroretinogram ON responses in patients with mutations in the GRM6 gene encoding mGluR6,” Proc. Natl. Acad. Sci. USA 102, 4884–4889 (2005).
  27. E. O’Connor, L. E. Allen, K. Bradshaw, J. Boylan, A. T. Moore, and D. Trump, “Congenital stationary night blindness associated with mutations in GRM6 encoding glutamate receptor MGluR6,” Br. J. Ophthalmol. 90, 653–654 (2006). [CrossRef]
  28. H. Terasaki, Y. Miyake, R. Nomura, M. Horiguchi, S. Suzuki, and M. Kondo, “Blue-on-yellow perimetry in the complete type of congenital stationary night blindness,” Investig. Ophthalmol. Vis. Sci. 40, 2761–2764 (1999).
  29. M. M. C. Bijveld, M. M. van Genderen, F. P. Hoeben, A. A. Katzin, R. M. A. van Nispen, F. C. C. Riemslag, and A. M. L. Kappers, “Assessment of night vision problems in patients with congenital stationary night blindness,” PloS One 8, e62927 (2013).
  30. K. Mancuso, M. C. Mauck, J. A. Kuchenbecker, M. Neitz, and J. Neitz, “A multi-stage color model revisited: implications for a gene therapy cure for red-green colorblindness,” in Retinal Degenerative Diseases, Advances in Experimental Medicine and Biology, R. E. Anderson, J. G. Hollyfield, and M. M. LaVail, eds., Vol. 664 of Advances in Experimental Medicine and Biology, (Springer, 2010), Chap. 72, pp. 631–638.
  31. J. Neitz and M. Neitz, “The genetics of normal and defective color vision,” Vis. Res. 51, 633–651 (2011). [CrossRef]
  32. C. Varela, R. Blanco, and P. De la Villa, “Depolarizing effect of GABA in rod bipolar cells of the mouse retina,” Vis. Res. 45, 2659–2667 (2005). [CrossRef]
  33. J. Duebel, S. Haverkamp, W. Schleich, G. Feng, G. J. Augustine, T. Kuner, and T. Euler, “Two-photon imaging reveals somatodendritic chloride gradient in retinal ON-type bipolar cells expressing the biosensor Clomeleon,” Neuron 49, 81–94 (2006). [CrossRef]
  34. C. Puller, M. B. Manookin, M. Neitz, and J. Neitz, “Syntaxin-4 is highly enriched beneath S-cone pedicles in the primate retina,” in Association for Research in Vision and Ophthalmology, Fort Lauderdale, Florida (2012), paper 6323.
  35. C. Puller, M. B. Manookin, M. Neitz, and J. Neitz, “Specialized synaptic pathway for chromatic signals beneath S-cone photoreceptors is common to human, Old and New World primates,” J. Opt. Soc. Am. A 31, A189–A194 (2014).
  36. C. Puller, M. B. Manookin, M. Neitz, and J. Neitz, “Synaptic elements for GABAergic feed-forward signaling between HII horizontal cells and blue cone bipolar cells are enriched beneath primate S-cones,” PloS One (2014), to be published.
  37. H. Sun, H. E. Smithson, Q. Zaidi, and B. B. Lee, “Specificity of cone inputs to macaque retinal ganglion cells,” J. Neurophysiol. 95, 837–849 (2006). [CrossRef]
  38. C. Tailby, S. G. Solomon, and P. Lennie, “Functional asymmetries in visual pathways carrying S-cone signals in macaque,” J. Neurosci. 28, 4078–4087 (2008). [CrossRef]
  39. F. M. de Monasterio, “Signals from blue cones in “red-green” opponent-colour ganglion cells of the macaque retina,” Vis. Res. 19, 441–449 (1979). [CrossRef]
  40. F. M. de Monasterio, P. Gouras, and D. J. Tolhurst, “Trichromatic colour opponency in ganglion cells of the rhesus monkey,” J. Physiol. 251, 197–216 (1975).
  41. F. M. de Monasterio and P. Gouras, “Responses of macaque ganglion cells to far violet lights,” Vis. Res. 17, 1147–1156 (1977). [CrossRef]
  42. J. Carroll, C. McMahon, M. Neitz, and J. Neitz, “Flicker-photometric electroretinogram estimates of L∶M cone photoreceptor ratio in men with photopigment spectra derived from genetics,” J. Opt. Soc. Am. A 17, 499–509 (2000). [CrossRef]
  43. A. Stockman and L. T. Sharpe, “The spectral sensitivities of the middle- and long-wavelength-sensitive cones derived from measurements in observers of known genotype,” Vis. Res. 40, 1711–1737 (2000). [CrossRef]
  44. D. H. Brainard and A. Stockman, “Colorimetry,” in Vision and Vision Optics, M. Bass, ed., 3rd ed. (McGraw-Hill, 2009), Chap. 10, pp. 1–56.
  45. J. Nathans, D. Thomas, and D. S. Hogness, “Molecular genetics of human color vision: the genes encoding blue, green, and red pigments,” Science 232, 193–202 (1986). [CrossRef]
  46. M. Neitz, J. Neitz, and G. H. Jacobs, “Spectral tuning of pigments underlying red-green color vision,” Nature 252, 971–974 (1991).
  47. J. Pokorny, V. C. Smith, and M. Lutze, “Aging of the human lens,” Appl. Opt. 26, 1437–1440 (1987). [CrossRef]
  48. J. Neitz, M. Neitz, J. C. He, and S. K. Shevell, “Trichromatic color vision with only two spectrally distinct photopigments,” Nat. Neurosci. 2, 884–888 (1999). [CrossRef]
  49. O. S. Packer, J. Verweij, P. H. Li, J. L. Schnapf, and D. M. Dacey, “Blue-yellow opponency in primate S cone photoreceptors,” J. Neurosci. 30, 568–572 (2010). [CrossRef]
  50. D. M. Dacey, B. B. Lee, D. K. Stafford, J. Pokorny, and V. C. Smith, “Horizontal cells of the primate retina: cone specificity without spectral opponency,” Science 271, 656–659 (1996). [CrossRef]
  51. J. E. Dowling and B. B. Boycott, “Organization of the primate retina: electron microscopy,” Proc. R. Soc. B 166, 80–111 (1966). [CrossRef]
  52. A. C. Aho, K. Donner, C. Hyden, L. O. Larsen, and T. Reuter, “Low retinal noise in animals with low body temperature allows high visual sensitivity,” Nature 334, 348–350 (1988). [CrossRef]
  53. J. Neitz, J. Carroll, Y. Yamauchi, M. Neitz, and D. R. Williams, “Color perception is mediated by a plastic neural mechanism that is adjustable in adults,” Neuron 35, 783–792 (2002). [CrossRef]
  54. J. S. Werner and B. E. Schefrin, “Loci of achromatic points throughout the life span,” J. Opt. Soc. Am. A 10, 1509–1516 (1993). [CrossRef]
  55. W. Paulus and A. Kröger-Paulus, “A new concept of retinal colour coding,” Vis. Res. 23, 529–540 (1983). [CrossRef]
  56. D. Dacey, O. S. Packer, L. Diller, D. Brainard, B. Peterson, and B. Lee, “Center surround receptive field structure of cone bipolar cells in primate retina,” Vis. Res. 40, 1801–1811 (2000). [CrossRef]
  57. M. Ayama, T. Nakatsue, and P. K. Kaiser, “Constant hue loci of unique and binary balanced hues at 10, 100, and 1000  Td,” J. Opt. Soc. Am. A 4, 1136–1144 (1987). [CrossRef]
  58. J. Carroll, J. Neitz, and M. Neitz, “Estimates of L∶M cone ratio from ERG flicker photometry and genetics,” J. Vis. 2(8):1, 531–542 (2002). [CrossRef]
  59. A. Roorda and D. R. Williams, “The arrangement of the three cone classes in the living human eye,” Nature 397, 520–522 (1999). [CrossRef]
  60. H. Hofer, J. Carroll, J. Neitz, M. Neitz, and D. R. Williams, “Organization of the human trichromatic cone mosaic,” J. Neurosci. 25, 9669–9679 (2005). [CrossRef]
  61. V. J. Volbrecht, J. L. Nerger, and C. E. Harlow, “The bimodality of unique green revisited,” Vis. Res. 37, 407–416 (1997). [CrossRef]
  62. J. L. Nerger, V. J. Volbrecht, and C. J. Ayde, “Unique hue judgments as a function of test size in the fovea and at 20 deg temporal eccentricity,” J. Opt. Soc. Am. A 12, 1225–1232 (1995). [CrossRef]
  63. V. J. Volbrecht and J. L. Nerger, “Color appearance at 10 along the vertical and horizontal meridians,” J. Opt. Soc. Am. A 29, A44–A51 (2012). [CrossRef]
  64. J. D. Mollon and G. Jordan, “On the nature of unique hues,” in John Dalton’s Colour Vision Legacy, C. Dickenson, I. Murray, and D. Carden, eds. (Taylor & Francis, 1997), pp. 381–392.
  65. D. L. Philipona and J. K. O. Regan, “Color naming, unique hues, and hue cancellation predicted from singularities in reflection properties,” Vis. Neurosci. 23, 331–339 (2006). [CrossRef]
  66. B. Boycott and H. Wassle, “Parallel processing in the mammalian retina: the Proctor lecture,” Investig. Ophthalmol. Vis. Sci. 40, 1313–1327 (1999).
  67. M. V. Danilova and J. D. Mollon, “Foveal color perception: minimal thresholds at a boundary between perceptual categories,” Vis. Res. 62, 162–172 (2012). [CrossRef]
  68. K. Mancuso, W. W. Hauswirth, Q. Li, T. B. Connor, J. A. Kuchenbecker, M. C. Mauck, J. Neitz, and M. Neitz, “Gene therapy for red-green colour blindness in adult primates,” Nature 461, 784–787 (2009). [CrossRef]
  69. A. M. Derrington, J. Krauskopf, and P. Lennie, “Chromatic mechanisms in lateral geniculate nucleus of macaque,” J. Physiol. 357, 241–265 (1984).
  70. D. M. Dacey, H.-W. Liao, B. B. Peterson, F. R. Robinson, V. C. Smith, J. Pokorny, K.-W. Yau, and P. D. Gamlin, “Melanopsin-expressing ganglion cells in primate retina signal colour and irradiance and project to the LGN,” Nature 433, 749–754 (2005). [CrossRef]
  71. D. M. Dacey, B. B. Peterson, and F. R. Robinson, “Identification of an S-cone opponent OFF pathway in the Macaque monkey retina: morphology, physiology and possible circuitry,” Investig. Ophthalmol. Vis. Sci. 43, E–abstract 2983 (2002).
  72. S. Chen and W. Li, “A color-coding amacrine cell may provide a blue-off signal in a mammalian retina,” Nat. Neurosci. 15, 954–956 (2012). [CrossRef]
  73. A. Sher and S. H. DeVries, “A non-canonical pathway for mammalian blue-green color vision,” Nat. Neurosci. 15, 952–953 (2012). [CrossRef]
  74. D. M. Dacey and O. S. Packer, “Colour coding in the primate retina: diverse cell types and cone-specific circuitry,” Curr. Opin. Neurobiol. 13, 421–427 (2003). [CrossRef]
  75. G. D. Field, J. L. Gauthier, A. Sher, M. Greschner, T. A. Machado, L. H. Jepson, J. Shlens, D. E. Gunning, K. Mathieson, W. Dabrowski, L. Paninski, A. M. Litke, and E. J. Chichilnisky, “Functional connectivity in the retina at the resolution of photoreceptors,” Nature 467, 673–677 (2010). [CrossRef]
  76. K. Klug, S. Herr, I. T. Ngo, P. Sterling, and S. Schein, “Macaque retina contains an S-cone OFF midget pathway,” J. Neurosci. 23, 9881–9887 (2003).
  77. H. R. Joo, B. B. Peterson, T. J. Haun, and D. M. Dacey, “Characterization of a novel large-field cone bipolar cell type in the primate retina: evidence for selective cone connections,” Vis. Neurosci. 28, 29–37 (2011). [CrossRef]
  78. W. Abney, “On the change in hue of spectrum colours by dilution with white light,” Proc. R. Soc. London 83, 120–127 (1909). [CrossRef]
  79. S. F. O’Neil, K. C. McDermott, Y. Mizokami, J. S. Werner, M. A. Crognale, and M. A. Webster, “Tests of a functional account of the Abney effect,” J. Opt. Soc. Am. A 29, A165–A173 (2012). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited