OSA's Digital Library

Journal of the Optical Society of America A

Journal of the Optical Society of America A


  • Editor: Franco Gori
  • Vol. 31, Iss. 4 — Apr. 1, 2014
  • pp: A220–A225

Factors governing the speed of color adaptation in foveal versus peripheral vision

Romain Bachy and Qasim Zaidi  »View Author Affiliations

JOSA A, Vol. 31, Issue 4, pp. A220-A225 (2014)

View Full Text Article

Enhanced HTML    Acrobat PDF (1503 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



Troxler showed that fixated stimuli fade faster in peripheral than in foveal vision. We used a time-varying procedure, to show that peripheral adaptation is faster and more pronounced than foveal adaptation for the three cardinal color modulations that isolate different classes of retinal ganglion cells. We then tested the hypothesis that fixational eye movements control the magnitude and speed of adaptation, by simulating them with intermittent flashes, and attenuating their effects with blurred borders. Psychophysical and electrophysiological results confirmed the eye movement-based hypothesis. By comparing effects across classes of ganglion cells, we found that the effects of eye movements are mediated not only by the increase in size of receptive fields with eccentricity, but also by the sensitivity of different ganglion cells to sharp borders and transient changes in the stimulus. Finally, using the same paradigm with retinal ganglion cells, we show that adaptation parameters do not vary for the three classes of ganglion cells for eccentricities from 2° to 12°, in the absence of eye movement.

© 2014 Optical Society of America

OCIS Codes
(330.1720) Vision, color, and visual optics : Color vision
(330.4060) Vision, color, and visual optics : Vision modeling
(330.5380) Vision, color, and visual optics : Physiology
(330.5510) Vision, color, and visual optics : Psychophysics
(330.7320) Vision, color, and visual optics : Vision adaptation

ToC Category:
Mesopic and peripheral vision

Original Manuscript: October 7, 2013
Revised Manuscript: December 18, 2013
Manuscript Accepted: December 27, 2013
Published: February 12, 2014

Virtual Issues
Vol. 9, Iss. 6 Virtual Journal for Biomedical Optics

Romain Bachy and Qasim Zaidi, "Factors governing the speed of color adaptation in foveal versus peripheral vision," J. Opt. Soc. Am. A 31, A220-A225 (2014)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. H. E. Smithson, “Sensory, computational and cognitive components of human colour constancy,” Phil. Trans. R. Soc. B 360, 1329–1346 (2005). [CrossRef]
  2. Q. Zaidi, “The role of adaptation in color constancy,” in Fitting the Mind to the World: Adaptation and After-Effects in High-Level Vision, C. W. G. Clifford and G. Rhodes, eds. (Oxford University, 2005), pp. 103–131.
  3. M. A. Webster, “Evolving concepts of sensory adaptation,” F1000 Biol. Rep. 4, 21–28 (2012). [CrossRef]
  4. D. Troxler, “Über das verschwinden gegebener gegenstände innerhalb unseres gesichtskreises [On the disappearance of given objects from our visual field],” Ophthalmologische bibliothek 2, 1–53 (1804).
  5. S. Martinez-Conde, S. L. Macknik, and D. H. Hubel, “The role of fixational eye movements in visual perception,” Nat. Rev. Neurosci. 5, 229–240 (2004). [CrossRef]
  6. S. Martinez-Conde, S. L. Macknik, X. G. Troncoso, and T. A. Dyar, “Microsaccades counteract visual fading during fixation,” Neuron 49, 297–305 (2006). [CrossRef]
  7. J. Krauskopf, “Effect of retinal image stabilization on the appearance of heterochromatic targets,” J. Opt. Soc. Am. 53, 741 (1963). [CrossRef]
  8. R. W. Ditchburn, D. H. Fender, and S. Mayne, “Vision with controlled movements of the retinal image,” J. Physiol. 145, 98–107 (1959).
  9. L. A. Riggs, F. Ratliff, J. C. Cornsweet, and T. N. Cornsweet, “The disappearance of steadily fixated visual test objects,” J. Opt. Soc. Am. 43, 495–500 (1953). [CrossRef]
  10. F. J. J. Clarke, “Rapid light adaptation of localised areas of the extra-foveal retina,” Opt. Acta 4, 69–77 (1957). [CrossRef]
  11. F. J. J. Clarke, “A study of Troxler’s effect,” Opt. Acta 7, 219–236 (1960). [CrossRef]
  12. F. J. J. Clarke, “Visual recovery following local adaptation of the peripheral retina (Troxler’s effect),” Opt. Acta 8, 121–135 (1961). [CrossRef]
  13. F. J. J. Clarke and S. J. Belcher, “On the localization of Troxler’s effect in the visual pathway,” Vis. Res. 2, 53–68 (1962). [CrossRef]
  14. M. Bach, “Hinton’s “Lilac chaser”,” http://www.michaelbach.de/ot/col_lilacChaser/index.html (2005).
  15. A. E. Welchman and J. M. Harris, “Filling-in the details on perceptual fading,” Vis. Res. 41, 2107–2117 (2001). [CrossRef]
  16. M. Millodot, “Variations extra-fovéales du phénomène de troxler,” Psychologie Française 12, 190–196 (1967).
  17. Q. Zaidi, R. Ennis, D. Cao, and B. B. Lee, “Neural locus of color afterimages,” Curr. Biol. 22, 220–224 (2012). [CrossRef]
  18. A. M. Derrington, J. Krauskopf, and P. Lennie, “Chromatic mechanisms in lateral geniculate nucleus of macaque,” J. Physiol. 357, 241–265 (1984).
  19. J. Krauskopf, D. Williams, and D. Heeley, “Cardinal directions of color space,” Vis. Res. 22, 1123–1131 (1982). [CrossRef]
  20. H. Sun, H. E. Smithson, Q. Zaidi, and B. B. Lee, “Specificity of cone inputs to macaque retinal ganglion cells,” J. Neurophysiol. 95, 837–849 (2006). [CrossRef]
  21. T. von Wiegand, D. Hood, and N. Graham, “Testing a computational model of light-adaptation dynamics,” Vis. Res. 35, 3037–3051 (1995). [CrossRef]
  22. D. W. Arathorn, S. B. Stevenson, Q. Yang, P. Tiruveedhula, and A. Roorda, “How the unstable eye sees a stable and moving world,” J. Vis. 13(10), 22–41 (2013). [CrossRef]
  23. Q. Zaidi and D. Halevy, “Visual mechanisms that signal the direction of color changes,” Vis. Res. 33, 1037–1051 (1993). [CrossRef]
  24. D. M. Dacey, “The mosaic of midget ganglion cells in the human retina,” J. Neurosci. 13, 5334–5355 (1993).
  25. B. B. Lee, P. R. Martin, and U. Grünert, “Retinal connectivity and primate vision,” Prog. Retinal Eye Res. 29, 622–639 (2010). [CrossRef]
  26. T. Yeh, B. B. Lee, and J. Kremers, “The time course of adaptation in macaque retinal ganglion cells,” Vis. Res. 36, 913–931 (1996). [CrossRef]
  27. D. H. C. Nothdurft and B. B. Lee, “Responses to coloured patterns in the macaque lateral geniculate nucleus: pattern processing in single neurones,” Exp. Brain Res. 48, 43–54 (1982).
  28. A. Valberg, B. B. Lee, P. K. Kaiser, and J. Kremers, “Responses of macaque ganglion cells to movement of chromatic borders,” J. Physiol. 458, 579–602 (1992).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited