OSA's Digital Library

Journal of the Optical Society of America A

Journal of the Optical Society of America A

| OPTICS, IMAGE SCIENCE, AND VISION

  • Editor: Franco Gori
  • Vol. 31, Iss. 4 — Apr. 1, 2014
  • pp: A357–A364

No difference in variability of unique hue selections and binary hue selections

J. M. Bosten and A. J. Lawrance-Owen  »View Author Affiliations


JOSA A, Vol. 31, Issue 4, pp. A357-A364 (2014)
http://dx.doi.org/10.1364/JOSAA.31.00A357


View Full Text Article

Enhanced HTML    Acrobat PDF (524 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

If unique hues have special status in phenomenological experience as perceptually pure, it seems reasonable to assume that they are represented more precisely by the visual system than are other colors. Following the method of Malkoc et al. (J. Opt. Soc. Am. A 22, 2154 [2005]), we gathered unique and binary hue selections from 50 subjects. For these subjects we repeated the measurements in two separate sessions, allowing us to measure test–retest reliabilities (0.52ρ0.78; p0.01). We quantified the within-individual variability for selections of each hue. Adjusting for the differences in variability intrinsic to different regions of chromaticity space, we compared the within-individual variability for unique hues to that for binary hues. Surprisingly, we found that selections of unique hues did not show consistently lower variability than selections of binary hues. We repeated hue measurements in a single session for an independent sample of 58 subjects, using a different relative scaling of the cardinal axes of MacLeod–Boynton chromaticity space. Again, we found no consistent difference in adjusted within-individual variability for selections of unique and binary hues. Our finding does not depend on the particular scaling chosen for the Y axis of MacLeod–Boynton chromaticity space.

© 2014 Optical Society of America

OCIS Codes
(330.1690) Vision, color, and visual optics : Color
(330.1720) Vision, color, and visual optics : Color vision
(330.5020) Vision, color, and visual optics : Perception psychology
(330.5510) Vision, color, and visual optics : Psychophysics

ToC Category:
Unique hues and color categories

History
Original Manuscript: October 4, 2013
Revised Manuscript: December 22, 2013
Manuscript Accepted: December 28, 2013
Published: March 5, 2014

Virtual Issues
Vol. 9, Iss. 6 Virtual Journal for Biomedical Optics

Citation
J. M. Bosten and A. J. Lawrance-Owen, "No difference in variability of unique hue selections and binary hue selections," J. Opt. Soc. Am. A 31, A357-A364 (2014)
http://www.opticsinfobase.org/josaa/abstract.cfm?URI=josaa-31-4-A357


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. E. Hering, Zur Lehre Vom Lichtsinne (Carl Gerold’s Sohn, 1878).
  2. I. Abramov and J. Gordon, “Color appearance: on seeing red-or yellow, or green, or blue,” Annu. Rev. Psychol. 45, 451–485 (1994). [CrossRef]
  3. R. G. Kuehni, R. Shamey, M. Mathews, and B. Keene, “Perceptual prominence of Hering’s chromatic primaries,” J. Opt. Soc. Am. A 27, 159–165 (2010). [CrossRef]
  4. R. L. De Valois and K. K. De Valois, “A multi-stage color model,” Vis. Res. 33, 1053–1065 (1993). [CrossRef]
  5. J. Mollon and C. Cavonius, “The chromatic antagonisms of opponent process theory are not the same as those revealed in studies of detection and discrimination,” in Colour Vision Deficiencies VIII, G. Verriest, ed. (Junk, 1987).
  6. K. A. Jameson and R. G. D’Andrade, “It’s not really red, green, yellow, blue: an inquiry into perceptual color space,” in Color Categories in Thought and Language, C. Hardin and L. Maffi, eds. (Cambridge University, 1997), pp. 295–319.
  7. J. Mollon, “A neural basis for unique hues?” Curr. Biol. 19, R441–R442 (2009). [CrossRef]
  8. C. M. Stoughton and B. R. Conway, “Neural basis for unique hues,” Curr. Biol. 18, R698–R699 (2008). [CrossRef]
  9. S. M. Wuerger and L. Parkes, “Unique hues: perception and brain imaging,” in New Directions in Colour Studies, C. Biggam, C. Hough, C. Kay, and D. Simmons, eds. (John Benjamin, 2011), pp. 445–455.
  10. A. Valberg, “Unique hues: an old problem for a new generation,” Vis. Res. 41, 1645–1657 (2001). [CrossRef]
  11. K. A. Jameson, “Where in the World Color Survey is the support for the Hering primaries as the basis for color categorization?” in Color Ontology and Color Science, J. Cohen and M. Matthen, eds. (MIT, 2010), pp. 179–202.
  12. P. Kay and T. Regier, “Resolving the question of color naming universals,” Proc. Natl. Acad. Sci. USA 100, 9085–9089 (2003). [CrossRef]
  13. B. A. Saunders and J. van Brakel, “Are there nontrivial constraints on colour categorization?” Behav. Brain Sci. 20, 167–179 (1997). [CrossRef]
  14. P. Kay, “Color categories are not arbitrary,” Cross-Cult. Res. 39, 39–55 (2005). [CrossRef]
  15. C. L. Hardin, “Explaining basic color categories,” Cross-Cult. Res. 39, 72–87 (2005). [CrossRef]
  16. D. Roberson, J. Davidoff, I. R. L. Davies, and L. R. Shapiro, “Color categories: evidence for the cultural relativity hypothesis,” Cogn. Psychol. 50, 378–411 (2005). [CrossRef]
  17. R. Kuehni, “Focal color variability and unique hue stimulus variability,” J. Cogn. Cult. 5, 409–426 (2005). [CrossRef]
  18. E. Miyahara, “Focal colors and unique hues,” Percept. Mot. Skills 97, 1038–1042 (2003).
  19. G. Malkoc, P. Kay, and M. A. Webster, “Variations in normal color vision. IV. binary hues and hue scaling,” J. Opt. Soc. Am. A 22, 2154–2168 (2005). [CrossRef]
  20. D. I. MacLeod and R. M. Boynton, “Chromaticity diagram showing cone excitation by stimuli of equal luminance,” J. Opt. Soc. Am. 69, 1183–1186 (1979). [CrossRef]
  21. C. Witzel and K. R. Gegenfurtner, “Categorical sensitivity to color differences,” J. Vis. 13(7):1, 1–33 (2013). [CrossRef]
  22. B. C. Regan and J. D. Mollon, “The relative salience of the cardinal axes of colour space in normal and anomalous trichromats,” in Colour Vision Deficiencies XIII, C. R. Cavonius, ed. (Kluwer, 1997), pp. 261–270.
  23. J. Birch, “Efficiency of the Ishihara test for identifying red–green colour deficiency,” Ophthalmic Physiol. Opt. 17, 403–408 (1997). [CrossRef]
  24. F. Vierling, Die Farbensinnprüfung bei der Deutschen Reichsbahn (Verlag Bernecker, 1935).
  25. D. Hinks, L. M. Cárdenas, R. G. Kuehni, and R. Shamey, “Unique-hue stimulus selection using Munsell color chips,” J. Opt. Soc. Am. A 24, 3371–3378 (2007). [CrossRef]
  26. K. Xiao, C. Fu, D. Mylonas, D. Karatzas, and S. Wuerger, “Unique hue data for colour appearance models. Part II: chromatic adaptation transform,” Color Res. Appl. 38, 22–29 (2013). [CrossRef]
  27. K. Xiao, S. Wuerger, C. Fu, and D. Karatzas, “Unique hue data for colour appearance models. Part I: loci of unique hues and hue uniformity,” Color Res. Appl. 36, 316–323 (2011). [CrossRef]
  28. S. Burns, A. Elsner, J. Pokorny, and V. Smith, “The Abney effect: chromaticity coordinates of unique and other constant hues,” Vis. Res. 24, 479–489 (1984). [CrossRef]
  29. G. Jordan and J. D. Mollon, “Rayleigh matches and unique green,” Vis. Res. 35, 613–620 (1995). [CrossRef]
  30. R. G. Kuehni, “Determination of unique hues using Munsell color chips,” Color Res. Appl. 26, 61–66 (2001). [CrossRef]
  31. B. E. Schefrin and J. S. Werner, “Loci of spectral unique hues throughout the life span,” J. Opt. Soc. Am. A 7, 305–311 (1990). [CrossRef]
  32. V. J. Volbrecht, J. L. Nerger, and C. E. Harlow, “The bimodality of unique green revisited,” Vis. Res. 37, 407–416 (1997). [CrossRef]
  33. M. A. Webster, E. Miyahara, G. Malkoc, and V. E. Raker, “Variations in normal color vision. II. unique hues,” J. Opt. Soc. Am. A 17, 1545–1555 (2000). [CrossRef]
  34. S. M. Wuerger, P. Atkinson, and S. Cropper, “The cone inputs to the unique-hue mechanisms,” Vis. Res. 45, 3210–3223 (2005). [CrossRef]
  35. R. Kuehni, “Variability in unique hue selection: a surprising phenomenon,” Color Res. Appl. 29, 158–162 (2004). [CrossRef]
  36. M. A. Webster, S. M. Webster, S. Bharadwaj, R. Verma, J. Jaikumar, G. Madan, and E. Vaithilingham, “Variations in normal color vision. III. unique hues in Indian and United States observers,” J. Opt. Soc. Am. A 19, 1951–1962 (2002). [CrossRef]
  37. P. Walraven, “On the Bezold–Brucke phenomenon,” J. Opt. Soc. Am. 51, 1113–1116 (1961). [CrossRef]
  38. D. L. Bimler and G. V. Paramei, “Bezold–Brücke effect in normal trichromats and protanopes,” J. Opt. Soc. Am. A 22, 2120–2136 (2005). [CrossRef]
  39. R. W. Pridmore, “Bezold–Brucke hue-shift as functions of luminance level, luminance ratio, interstimulus interval and adapting white for aperture and object colors,” Vis. Res. 39, 3873–3891 (1999). [CrossRef]
  40. G. Jacobs and T. Wascher, “Bezold–Brücke hue shift: further measurements,” J. Opt. Soc. Am. 57, 1155–1156 (1967). [CrossRef]
  41. D. Purdy, “The Bezold–Brücke phenomenon and contours for constant hue,” Am. J. Psychol. 49, 313–315 (1937). [CrossRef]
  42. M. Ayama, T. Nakatsue, and P. K. Kaiser, “Constant hue loci of unique and binary balanced hues at 10, 100, and 1000  Td,” J. Opt. Soc. Am. A 4, 1136–1144 (1987). [CrossRef]
  43. R. Boynton and J. Gordon, “Bezold–Brücke hue shift measured by color-naming technique,” J. Opt. Soc. Am. 55, 78–85 (1965). [CrossRef]
  44. R. W. Pridmore, “Unique and binary hues as functions of luminance and illuminant color temperature, and relations with invariant hues,” Vis. Res. 39, 3892–3908 (1999). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1. Fig. 2. Fig. 3.
 
Fig. 4.
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited