OSA's Digital Library

Journal of the Optical Society of America A

Journal of the Optical Society of America A

| OPTICS, IMAGE SCIENCE, AND VISION

  • Editor: Franco Gori
  • Vol. 31, Iss. 4 — Apr. 1, 2014
  • pp: A38–A46

The Verriest Lecture: Visual properties of metameric blacks beyond cone vision

Françoise Viénot and Hans Brettel  »View Author Affiliations


JOSA A, Vol. 31, Issue 4, pp. A38-A46 (2014)
http://dx.doi.org/10.1364/JOSAA.31.000A38


View Full Text Article

Enhanced HTML    Acrobat PDF (822 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

The generic framework of metamerism implies that the number of sensors is smaller than the dimension of the stimulus. The metameric black paradigm was introduced by Wyszecki [Farbe 2, 39 (1953)] and developed by Cohen and Kappauf [Am. J. Psychol. 95, 537 (1982)]. Within a multireceptor and multiprimary scheme, we investigate how far the choice of illumination can isolate a photoreceptor response. The spectral profiles of the fundamental metamers that correspond to a collection of ( x , y ) values over the chromaticity diagram are shown. When the luminance is set at a fixed value, the relative excitation of the melanopsin cells and of the rods elicited by the fundamental metamers varies over the chromaticity diagram. The range of excitation of the melanopsin cells and of the rods that could be achieved at a given chromaticity, by manipulating the metameric black content, is examined. When only the melanopsin excitation is manipulated, the range of melanopsin excitation that can be achieved is rather limited. On the chromaticity diagram, the largest range of variation of the rods and the melanopsin cells excitation is obtained for ( x , y ) chromaticity coordinates near ( 1 / 3 , 1 / 3 ) . Extension of Cohen’s procedure to rod and cone metamers is proposed. The higher the number of spectral bands, the wider the choice of metameric lights.

© 2013 Optical Society of America

OCIS Codes
(330.1720) Vision, color, and visual optics : Color vision
(330.1715) Vision, color, and visual optics : Color, rendering and metamerism
(330.4595) Vision, color, and visual optics : Optical effects on vision

ToC Category:
Verriest Lecture

History
Original Manuscript: October 3, 2013
Manuscript Accepted: October 31, 2013
Published: December 19, 2013

Citation
Françoise Viénot and Hans Brettel, "The Verriest Lecture: Visual properties of metameric blacks beyond cone vision," J. Opt. Soc. Am. A 31, A38-A46 (2014)
http://www.opticsinfobase.org/josaa/abstract.cfm?URI=josaa-31-4-A38


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. W. Ostwald, Physikalische Farbenlehre (VerlagUnesma, 1919), p. 237.
  2. P. K. Kaiser and R. M. Boynton, Human Color Vision, 2nd ed. (Optical Society of America, 1996), pp. 124–125.
  3. R. J. Clarke, “Primate pupillary light reflex: receptive field characteristics of pretectal luminance neurons,” J. Neurophysiol. 89, 3168–3178 (2003). [CrossRef]
  4. D. M. Dacey, H.-W. Liao, B. B. Peterson, F. R. Robinson, V. C. Smith, J. Pokorny, K.-W. Yau, and P. D. Gamlin, “Melanopsin-expressing ganglion cells in primate retina signal colour and irradiance and project to the LGN,” Nature 433, 749–754 (2005). [CrossRef]
  5. Y. Fukuda, S. Higuchi, A. Yasukouchi, and T. Morita, “Distinct responses of cones and melanopsin expressing retinal ganglion cells in the human electroretinogram,” J. Physiol. Anthropol. 31, 20 (2012). [CrossRef]
  6. R. W. Rodieck, “Which two lights that match for cones show the greatest ratio for rods?” Vis. Res. 16, 303–307 (1976). [CrossRef]
  7. D. Cao, J. Pokorny, V. C. Smith, and A. J. Zele, “Rod contributions to color perception: linear with rod contrast,” Vis. Res. 48, 2586–2592 (2008). [CrossRef]
  8. A. G. Shapiro, J. Pokorny, and V. C. Smith, “Cone–rod receptor spaces with illustrations that use CRT phosphor and light-emitting-diode spectra,” J. Opt. Soc. Am. A 13, 2319–2328 (1996). [CrossRef]
  9. P. W. Trezona, “The tetrachromatic colour match as a colorimetric technique,” Vis. Res. 13, 9–25 (1973). [CrossRef]
  10. J. del Barco, L. E. Hita, J. Romero, and J. Vida, “Color-prediction discrepancies and differential chromaticity thresholds with photopigment bleaching,” J. Opt. Soc. Am. A 5, 432–437 (1988). [CrossRef]
  11. W. S. Stiles and J. M. Burch, “N.P.L. colour-matching investigation: final report,” Opt. Acta 6, 1–26 (1959). [CrossRef]
  12. W. S. Stiles and G. Wyszecki, “Rod intrusion in large-field color matching,” Acta Chromatica 2, 155–163 (1973).
  13. S. Tsujimura, K. Ukai, D. Ohama, A. Nuruki, and K. Yunokuchi, “Contribution of human melanopsin retinal ganglion cells to steady-state pupil responses,” Proc. R. Soc. B 277, 2485–2492 (2010). [CrossRef]
  14. H. Horiguchi, J. Winawer, R. F. Dougherty, and B. A. Wandell, “Human trichromacy revisited,” Proc. Natl. Acad. Sci. USA 110, E260–E269 (2013). [CrossRef]
  15. T. M. Brown, S. Tsujimura, A. E. Allen, J. Wynne, R. Bedford, G. Vickery, A. Vugler, and R. J. Lucas, “Melanopsin-based brightness discrimination in mice and humans,” Curr. Biol. 22, 1134–1141 (2012). [CrossRef]
  16. G. Wyszecki, “Valenzmetrische untersuchung des Zusammenhanges zwischen normaler und anomaler Trichromasie,” Farbe 2, 39–52 (1953).
  17. J. B. Cohen and W. E. Kappauf, “Metameric color stimuli, fundamental metamers, and Wyszecki’s metameric blacks,” Am. J. Psychol. 95, 537–564 (1982). [CrossRef]
  18. J. B. Cohen, Visual Color and Color Mixture: The Fundamental Color Space (University of Illinois, 2001).
  19. C. van Trigt, “Visual system-response functions and estimating reflectance,” J. Opt. Soc. Am. A 14, 741–755 (1997). [CrossRef]
  20. R. G. Kuehni, “Intersection nodes of metameric matches,” Color Res. Appl. 4, 101–102 (1979).
  21. S. A. Burns, J. B. Cohen, and E. N. Kuznetsov, “The Munsell color system in fundamental color space,” Color Res. Appl. 28, 182–196 (1990).
  22. R. Ramanath, R. Kuehni, W. Snyder, and D. Hinks, “Spectral spaces and color spaces,” Color Res. Appl. 29, 29–37 (2004). [CrossRef]
  23. G. D. Finlayson and P. M. Morovic, “Metamer sets,” J. Opt. Soc. Am. A 22, 810–819 (2005). [CrossRef]
  24. M. H. Brill and G. West, “Chromatic adaptation and color constancy: a possible dichotomy,” Color Res. Appl. 11, 196–204 (1986). [CrossRef]
  25. F. H. Imai and R. S. Berns, “High-resolution multi-spectral image archives: a hybrid approach,” in Proceedings of the IS&T/SID Sixth Color Imaging Conference (1988), pp. 224–227.
  26. A. Alsam and R. Lenz, “Calibrating color cameras using metameric blacks,” J. Opt. Soc. Am. A 24, 11–17 (2007). [CrossRef]
  27. G. Wyszecki, “Evaluation of metameric colors,” J. Opt. Soc. Am. 48, 451–452 (1958). [CrossRef]
  28. K. Knoblauch and S. K. Shevell, “Color appearance,” in The Visual Neurosciences, L. Chalupa and J. Werner, eds. (MIT, 2003), pp. 892–907.
  29. G. Wyszecki and W. S. Stiles, Color Science: Concepts and Methods, Quantitative Data and Formulae, 2nd ed. (Wiley, 1982).
  30. CIE, “Fundamental chromaticity diagram with physiological axes—Part 1,” CIE Publication (CIE, 2007).
  31. CIE, “International electrotechnical vocabulary,” CIE Publication (CIE, 1987), Section 845-01-22, http://www.electropedia.org/iev/iev.nsf/index?openform&part=845 .
  32. L. T. Sharpe, A. Stockman, H. Jägle, and J. Nathans, “Opsin genes, cone photopigments, color vision, and color blindness,” in Color Vision: From Genes to Perception, K. R. Gegenfurtner and L. T. Sharpe, eds., 1st ed. (Cambridge University, 2001), pp. 3–52.
  33. A. Sarkar, F. Autrusseau, F. Viénot, P. Le Callet, and L. Blondé, “From CIE 2006 physiological model to improved age-dependent and average colorimetric observers,” J. Opt. Soc. Am. A 28, 2033–2048 (2011). [CrossRef]
  34. F. Viénot, L. Serreault, and P. Pardo Fernandez, “Convergence of experimental multiple Rayleigh matches to peak L- and M-photopigment sensitivity estimates,” Vis. Neurosci. 23, 1–8 (2006). [CrossRef]
  35. F. Viénot, H. Brettel, T.-V. Dang, and J. Le Rohellec, “Domain of metamers exciting intrinsically photosensitive retinal ganglion cells (ipRGCs) and rods,” J. Opt. Soc. Am. A 29, A366–A376 (2012). [CrossRef]
  36. A. Stockman and L. T. Sharpe, “Cone spectral sensitivities and color matching,” in Color Vision: From Genes to Perception, K. R. Gegenfurtner, L. T. Sharpe, and B. B. Boycott, eds. (Cambridge University, 2001), pp. 53–87.
  37. M. T. H. Do, S. H. Kang, T. Xue, H. Zhong, H.-W. Liao, D. E. Bergles, and K.-W. Yau, “Photon capture and signalling by ipRGC retinal ganglion cells,” Nature 457, 281–287 (2009). [CrossRef]
  38. J. al Enezi, V. Revell, T. Brown, J. Wynne, L. Schlangen, and R. Lucas, “A ‘melanopic’ spectral efficiency function predicts the sensitivity of IpRGC photoreceptors to polychromatic lights,” J. Biol. Rhythms 26, 314–323 (2011). [CrossRef]
  39. J. J. Gooley, I. Ho Mien, M. A. St. Hilaire, S.-C. Yeo, E. C.-P. Chua, E. van Reen, C. J. Hanley, J. T. Hull, C. A. Czeisler, and S. W. Lockley, “Melanopsin and rod-cone photoreceptors play different roles in mediating pupillary light responses during exposure to continuous light in humans,” J. Neurosci. 32, 14242–14253 (2012). [CrossRef]
  40. H. J. Bailes and R. J. Lucas, “Human melanopsin forms a pigment maximally sensitive to blue light (λmax⁡≈479  nm) supporting activation of Gq11 and Gi/o signalling cascades.” Proc. R. Soc. B 280, 20122987 (2013). [CrossRef]
  41. L. S. Mure, P.-L. Cornut, C. Rieux, E. Drouyer, P. Denis, C. Gronfier, and H. M. Cooper, “Melanopsin bistability: a fly’s eye technology in the human retina,” PLoS ONE 4, e5991 (2009). [CrossRef]
  42. T. M. Brown, A. E. Allen, J. al-Enezi, J. Wynne, L. Schlangen, V. Hommes, and R. J. Lucas, “The melanopic sensitivity function accounts for melanopsin-driven responses in mice under diverse lighting conditions,” PLoS ONE 8, e53583 (2013). [CrossRef]
  43. Y. Ohno, “Spectral design considerations for white LED color rendering,” Opt. Eng. 44, 111302 (2005). [CrossRef]
  44. R. Oldenhuis, “Optimize (non)linear (in)equality constrained functions with FMINSEARCH,” 2009, http://www.mathworks.com/matlabcentral/fileexchange/24298-optimize24298-optimize .
  45. O. Estévez and H. Spekreijse, “The ‘silent substitution’ method in visual research,” Vis. Res. 22, 681–691 (1982). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited