OSA's Digital Library

Journal of the Optical Society of America A

Journal of the Optical Society of America A


  • Editor: Franco Gori
  • Vol. 31, Iss. 4 — Apr. 1, 2014
  • pp: A65–A74

S-cone discrimination in the presence of two adapting fields: data and model

Dingcai Cao  »View Author Affiliations

JOSA A, Vol. 31, Issue 4, pp. A65-A74 (2014)

View Full Text Article

Enhanced HTML    Acrobat PDF (842 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



This study investigated S-cone discrimination using a test annulus surrounded by an inner and outer adapting field with systematic manipulation of the adapting l = L / ( L + M ) or s = S / ( L + M ) chromaticities. The results showed that different adapting l chromaticities altered S-cone discrimination for a high adapting s chromaticity due to parvocellular input to the koniocellular pathway. In addition, S-cone discrimination was determined by the combined spectral signals arising from both adapting fields. The “white” adapting field or an adapting field with a different l chromaticity from the other fields was more likely to have a stronger influence on discrimination thresholds. These results indicated that the two cardinal axes are not independent in S-cone discrimination, and the two adapting fields jointly contribute to S-cone discrimination through a cortical summation mechanism.

© 2014 Optical Society of America

OCIS Codes
(330.1720) Vision, color, and visual optics : Color vision
(330.4060) Vision, color, and visual optics : Vision modeling
(330.5510) Vision, color, and visual optics : Psychophysics
(330.7320) Vision, color, and visual optics : Vision adaptation

ToC Category:
Chromatic discrimination

Original Manuscript: October 3, 2013
Revised Manuscript: November 25, 2013
Manuscript Accepted: December 4, 2013
Published: January 15, 2014

Virtual Issues
Vol. 9, Iss. 6 Virtual Journal for Biomedical Optics

Dingcai Cao, "S-cone discrimination in the presence of two adapting fields: data and model," J. Opt. Soc. Am. A 31, A65-A74 (2014)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. D. M. Dacey, “Parallel pathways for spectral coding in primate retina,” Annu. Rev. Neurosci. 23, 743–775 (2000). [CrossRef]
  2. B. B. Lee, “Visual pathways and psychophysical channels in the primate,” J. Physiol. 589, 41–47 (2011). [CrossRef]
  3. D. I. A. MacLeod and R. M. Boynton, “Chromaticity diagram showing cone excitation by stimuli of equal luminance,” J. Opt. Soc. Am. 69, 1183–1185 (1979). [CrossRef]
  4. V. C. Smith and J. Pokorny, “The design and use of a cone chromaticity space,” Color Res. Appl. 21, 375–383 (1996). [CrossRef]
  5. A. M. Derrington, J. Krauskopf, and P. Lennie, “Chromatic mechanisms in lateral geniculate nucleus of macaque,” J. Physiol. 357, 241–265 (1984).
  6. B. B. Lee, J. Pokorny, V. C. Smith, P. R. Martin, and A. Valberg, “Luminance and chromatic modulation sensitivity of macaque ganglion cells and human observers,” J. Opt. Soc. Am. A 7, 2223–2236 (1990). [CrossRef]
  7. H. Sun, H. E. Smithson, Q. Zaidi, and B. B. Lee, “Specificity of cone inputs to macaque retinal ganglion cells,” J. Neurophysiol. 95, 837–849 (2006). [CrossRef]
  8. C. Tailby, S. G. Solomon, and P. Lennie, “Functional asymmetries in visual pathways carrying S-cone signals in macaque,” J. Neurosci. 28, 4078–4087 (2008). [CrossRef]
  9. B. R. Conway, “Spatial structure of cone inputs to color cells in alert macaque primary visual cortex (V-1),” J. Neurosci. 21, 2768–2783 (2001).
  10. B. R. Conway, “Color vision, cones, and color-coding in the cortex,” Neuroscientist 15, 274–290 (2009). [CrossRef]
  11. M. A. Webster and J. D. Mollon, “Changes in colour appearance following post-receptoral adaptation,” Nature 349, 235–238 (1991). [CrossRef]
  12. M. A. Webster and J. D. Mollon, “The influence of contrast adaptation on color appearance,” Vis. Res. 34, 1993–2020 (1994). [CrossRef]
  13. M. V. Danilova and J. Mollon, “Parafoveal color discrimination: a chromaticity locus of enhanced discrimination,” J. Vis. 10(1):1–9 (2010).
  14. M. V. Danilova and J. D. Mollon, “Cardinal axes are not independent in color discrimination,” J. Opt. Soc. Am. A 29, A157–A164 (2012). [CrossRef]
  15. R. T. Eskew, J. R. Newton, and F. Giulianini, “Chromatic detection and discrimination analyzed by a Bayesian classifier,” Vis. Res. 41, 893–909 (2001). [CrossRef]
  16. J. Krauskopf, D. R. Williams, M. B. Mandler, and A. M. Brown, “Higher order color mechanisms,” Vis. Res. 26, 23–32 (1986). [CrossRef]
  17. J. R. Newton and R. T. Eskew, “Chromatic detection and discrimination in the periphery: a postreceptoral loss of color sensitivity,” Vis. Neurosci. 20, 511–521 (2003). [CrossRef]
  18. J. S. McLellan and R. T. Eskew, “ON and OFF S-cone pathways have different long-wave cone inputs,” Vis. Res. 40, 2449–2465 (2000). [CrossRef]
  19. T. Hansen and K. R. Gegenfurtner, “Classification images for chromatic signal detection,” J. Opt. Soc. Am. A 22, 2081–2089 (2005). [CrossRef]
  20. K. T. Mullen and J. J. Kulikowski, “Wavelength discrimination at detection threshold,” J. Opt. Soc. Am. A 7, 733–742 (1990). [CrossRef]
  21. D. C. Cao and S. K. Shevell, “Chromatic assimilation: spread light or neural mechanism?” Vis. Res. 45, 1031–1045 (2005). [CrossRef]
  22. X. Zhuang and D. Cao, “Contrast magnitude and polarity effects on color filling-in along cardinal color axes,” J. Vis. 13(7):19 (2013). [CrossRef]
  23. R. T. Eskew, “Higher order color mechanisms: a critical review,” Vis. Res. 49, 2686–2704 (2009). [CrossRef]
  24. K. R. Gegenfurtner, “Cortical mechanisms of colour vision,” Nat. Rev. Neurosci. 4, 563–572 (2003). [CrossRef]
  25. J. D. Mollon and P. G. Polden, “An anomaly in the response of the eye to light of short wavelengths,” Phil. Trans. R. Soc. B 278, 207–240 (1977). [CrossRef]
  26. M. D. Fairchild and P. Lennie, “Chromatic adaptation to natural and incandescent illuminants,” Vis. Res. 32, 2077–2085 (1992). [CrossRef]
  27. A. Li and P. Lennie, “Mechanisms underlying segmentation of colored textures,” Vis. Res. 37, 83–97 (1997). [CrossRef]
  28. T. Hansen, M. Giesel, and K. R. Gegenfurtner, “Chromatic discrimination of natural objects,” J. Vis. 8(1):2 (2008). [CrossRef]
  29. M. Giesel, T. Hansen, and K. R. Gegenfurtner, “The discrimination of chromatic textures,” J. Vis. 9(9), 11 (2009). [CrossRef]
  30. D. Cao and Y. Lu, “Chromatic discrimination: differential contributions from two adapting fields,” J. Opt. Soc. Am. A 29, A1–A9 (2012). [CrossRef]
  31. P. D. Spear, C. B. Y. Kim, A. Ahmad, and B. W. Tom, “Relationship between numbers of retinal ganglion cells and lateral geniculate neurons in the rhesus monkey,” Vis. Neurosci. 13, 199–203 (1996). [CrossRef]
  32. Y. LeGrand, Light, Colour and Vision, 2nd ed. (Chapman & Hall, 1968), pp. 1–564.
  33. D. Cao, J. Pokorny, and V. C. Smith, “Matching rod percepts with cone stimuli,” Vis. Res. 45, 2119–2128 (2005). [CrossRef]
  34. D. Cao, J. Pokorny, V. C. Smith, and A. J. Zele, “Rod contributions to color perception: linear with rod contrast,” Vis. Res. 48, 2586–2592 (2008). [CrossRef]
  35. D. Cao, A. J. Zele, V. C. Smith, and J. Pokorny, “S-cone discrimination for stimuli with spatial and temporal chromatic contrast,” Vis. Neurosci. 25, 349–354 (2008).
  36. J. Pokorny and V. C. Smith, “Chromatic discrimination,” in The Visual Neuroscience, L. M. Chalupa and J. S. Werner, eds. (Massachusetts Institute of Technology, 2004), pp. 908–923.
  37. E. N. J. Pugh and J. D. Mollon, “A theory of the π-1 and π-3 color mechanisms of Stiles,” Vis. Res. 19, 293–312 (1979). [CrossRef]
  38. Q. Zaidi, A. Shapiro, and D. Hood, “The effect of adaptation on the differential sensitivity of the S-cone color system,” Vis. Res. 32, 1297–1318 (1992). [CrossRef]
  39. V. C. Smith and J. Pokorny, “Spectral sensitivity of the foveal cone photopigments between 400 and 500 nm,” Vis. Res. 15, 161–171 (1975). [CrossRef]
  40. E. Miyahara, V. C. Smith, and J. Pokorny, “How surrounds affect chromaticity discrimination,” J. Opt. Soc. Am. A 10, 545–553 (1993). [CrossRef]
  41. B. W. Tansley and R. M. Boynton, “A line, not a space, represents visual distinctness of borders formed by different colors,” Science 191, 954–957 (1976). [CrossRef]
  42. B. W. Tansley and R. M. Boynton, “Chromatic border perception: the role of red- and green-sensitive cones,” Vis. Res. 18, 683–697 (1978). [CrossRef]
  43. J. Mollon, “Seeing colour,” in Colour: Art & Science (1995), pp. 127–150.
  44. G. D. Horwitz, E. Chichilnisky, and T. D. Albright, “Blue-yellow signals are enhanced by spatiotemporal luminance contrast in macaque V1,” J. Neurophysiol. 93, 2263–2278 (2005). [CrossRef]
  45. G. D. Horwitz, E. Chichilnisky, and T. D. Albright, “Cone inputs to simple and complex cells in V1 of awake macaque,” J. Neurophysiol. 97, 3070–3081 (2007). [CrossRef]
  46. B. R. Conway and M. S. Livingstone, “Spatial and temporal properties of cone signals in alert macaque primary visual cortex,” J. Neurosci. 26, 10826–10846 (2006). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited