OSA's Digital Library

Journal of the Optical Society of America A

Journal of the Optical Society of America A


  • Editor: Franco Gori
  • Vol. 31, Iss. 5 — May. 1, 2014
  • pp: 1067–1073

Leakage interferences applied to surface plasmon analysis

Julien Laverdant, Samuel Aberra Guebrou, François Bessueille, Clementine Symonds, and Joel Bellessa  »View Author Affiliations

JOSA A, Vol. 31, Issue 5, pp. 1067-1073 (2014)

View Full Text Article

Enhanced HTML    Acrobat PDF (879 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We report the experimental combination of leakage radiation microscopy with a Young slit experiment to address the spatial coherence properties of surface waves. We applied this method to measurements of surface plasmon polaritons (SPPs). The relationship between the spatial decay and interference contrast allows us to extract the degree of coherence. In a second step, we investigate the coherence properties of the plasmon in the weak coupling regime between fluorophores and metallic surfaces. Finally, a method is proposed to extract the propagation length of SPPs in a large variety of systems.

© 2014 Optical Society of America

OCIS Codes
(030.1640) Coherence and statistical optics : Coherence
(180.2520) Microscopy : Fluorescence microscopy
(240.6680) Optics at surfaces : Surface plasmons

ToC Category:
Optics at Surfaces

Original Manuscript: January 10, 2014
Manuscript Accepted: February 25, 2014
Published: April 18, 2014

Julien Laverdant, Samuel Aberra Guebrou, François Bessueille, Clementine Symonds, and Joel Bellessa, "Leakage interferences applied to surface plasmon analysis," J. Opt. Soc. Am. A 31, 1067-1073 (2014)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. W. L. Barnes, A. Dereux, and T. W. Ebbesen, “Surface plasmon subwavelength optics,” Nature 424, 824–830 (2003). [CrossRef]
  2. S. A. Maier, Plasmonics: Fundamentals and Applications (Springer, 2007).
  3. L. Novotny and B. Hecht, Principle of Nano-Optics (Cambridge University, 2006).
  4. F. A. Koenderink, “On the use of Purcell factors for plasmon antennas,” Opt. Lett. 35, 4208–4210 (2010). [CrossRef]
  5. M. W. Knight, H. Sobhani, P. Nordlander, and N. J. Halas, “Photodetection with active antennas,” Science 332, 702–704 (2011). [CrossRef]
  6. J. R. Lakowicz, “Radiative decay engineering and biomedical applications,” Anal. Biochem. 298, 1–24 (2001). [CrossRef]
  7. M. P. Busson, B. Rolly, B. Stout, N. Bonod, and S. Bidault, “Accelerated single photon emission from dye molecule-driven nanoantennas assembled on DNA,” Nat. Commun. 3, 962 (2012). [CrossRef]
  8. S. Husaini, H. Teng, and V. M. Menon, “Enhanced nonlinear optical response of metal nanocomposite based photonic crystals,” Appl. Phys. Lett. 101, 111103 (2012). [CrossRef]
  9. B. Rothenhausler and W. Knoll, “Surface plasmon microscopy,” Nature 332, 615–617 (1988). [CrossRef]
  10. E. Werts, L. Ferrier, D. Solnyshkov, R. Johne, D. Sanvitto, A. Lemaitre, I. Sagnes, R. Grousson, A. V. Kavokin, P. Senellart, G. Malpuech, and J. Bloch, “Spontaneous formation and optical manipulation of extended polariton condensates,” Nat. Phys. 6, 860–864 (2010). [CrossRef]
  11. F. Dubin, R. Melet, T. Barisien, R. Grousson, L. Legrand, M. Schott, and V. Voliotis, “Macroscopic coherence of a single exciton state in an organic quantum wire,” Nat. Phys. 2, 32–35 (2005). [CrossRef]
  12. A. K. Ekert, “Quantum cryptography based on Bell’s theorem,” Phys. Rev. Lett. 67, 661–663 (1991). [CrossRef]
  13. G. Grymberg, A. Aspect, and C. Fabre, Introduction to Quantum Optics (Cambridge University, 2010).
  14. S. Ravets, J. C. Rodier, B. Ea. Kim, J. P. Hugonin, L. Jacubowiez, and P. Lalanne, “Surface plasmons in the Young slit doublet experiment,” J. Opt. Soc. Am. B 26, B28–B33 (2009). [CrossRef]
  15. L. G. de Peralta, “Study of interference between surface plasmon polaritons by leakage radiation microscopy,” J. Opt. Soc. Am. B 27, 1513–1517 (2010). [CrossRef]
  16. C. H. Gan, G. Gbur, and T. D. Visser, “Surface plasmons modulate the spatial coherence of light in Young’s interference experiment,” Phys. Rev. Lett. 98, 043908 (2007). [CrossRef]
  17. A. Drezet, D. Koller, A. Hohenau, A. Leitner, F. R. Aussenegg, and J. R. Krenn, “Plasmonic crystal demultiplexer and multiports,” Nano Lett. 7, 1697–1700 (2007). [CrossRef]
  18. S. C. Kitson, W. L. Barnes, and J. R. Sambles, “Full photonic band gap for surface modes in the visible,” Phys. Rev. Lett. 77, 2670–2673 (1996). [CrossRef]
  19. M. Aeschlimann, M. Bauer, D. Bayer, T. Brixner, F. J. Garcia de Abajo, W. Pfeiffer, M. Rohmer, C. Spindler, and F. Steeb, “Adaptative subwavelength control of nano-optical fields,” Nature 446, 301–304 (2007). [CrossRef]
  20. D. J. Bergman and M. I. Stockman, “Surface plasmon amplification by stimulated emission of radiation: quantum generation of coherent surface plasmons in nanosystems,” Phys. Rev. Lett. 90, 027402 (2003). [CrossRef]
  21. M. A. Noginov, G. Zhu, A. M. Belgrave, R. Bakker, V. M. Shalaev, E. E. Narimanov, S. Stout, E. Herz, T. Suteewong, and U. Wiesner, “Demonstration of a spaser-based nanolaser,” Nature 460, 1110–1112 (2009). [CrossRef]
  22. A. Huck, S. Smolka, P. Lodahl, A. Sorensen, A. Boltasseva, J. Janousek, and U. L. Andersen, “Demonstration of quadrature-squeezed surface plasmons in a gold waveguide,” Phys. Rev. Lett. 102, 246802 (2009). [CrossRef]
  23. A. V. Akimov, A. Mukherjee, C. L. Yu, D. E. Chang, A. S. Zibrov, P. R. Hemmer, H. Park, and M. D. Lukin, “Generation of single optical plasmons in metallic nanowires coupled to quantum dots,” Nature 450, 402–406 (2007). [CrossRef]
  24. S. Fasel, F. Robin, E. Moreno, D. Erni, N. Gisin, and H. Zbinden, “Energy–time entanglement preservation in plasmon-assisted light transmission,” Phys. Rev. Lett. 94, 110501 (2005). [CrossRef]
  25. S. Aberra Guebrou, J. Laverdant, C. Symonds, and J. Bellessa, “Spatial coherence properties of surface plasmon investigated by Young’s slit experiment,” Opt. Lett 37, 2139–2141 (2012). [CrossRef]
  26. S. Aberra Guebrou, J. Laverdant, C. Symonds, S. Vignoli, F. Bessueille, and J. Bellessa, “Influence of surface plasmon propagation on leakage radiation imaging,” Appl. Phys. Lett. 101, 123106 (2012). [CrossRef]
  27. M. Born and E. Wolf, Principles of Optics (Pergamon, 1980).
  28. J. Tervo, T. Setala, and A. T. Friberg, “Degree of coherence for electromagnetic fields,” Opt. Express 11, 1137–1143 (2003). [CrossRef]
  29. R. Carminati and J.-J. Greffet, “Near-field effects in spatial coherence of thermal sources,” Phys. Rev. Lett. 82, 1660–1663 (1999). [CrossRef]
  30. J. J. Greffet, R. Carminati, K. Joulain, J. P. Mullet, S. Mainguy, and Y. Chen, “Coherent emission of light by thermal sources,” Nature 416, 61–64 (2002). [CrossRef]
  31. A. Bouhelier and G. P. Wiederrecht, “Excitation of broadband surface plasmon polaritons: plasmonic continuum spectroscopy,” Phys. Rev. B 71, 195406 (2005). [CrossRef]
  32. J. Laverdant, S. Buil, B. Berini, and X. Quelin, “Polarization dependent near-field speckle of random gold films,” Phys. Rev. B 77, 165406 (2008). [CrossRef]
  33. S. Aberra Guebrou, C. Symonds, E. Homeyer, J. C. Plenet, Y. N. Garstein, V. M. Agranovich, and J. Bellessa, “Coherent emission from disordered organic semiconductor induced by strong coupling with surface plasmons,” Phys. Rev. Lett. 108, 066401 (2012). [CrossRef]
  34. D. E. Gomez, K. C. Vernon, P. Mulvaney, and T. J. Davis, “Coherent superposition of exciton states in quantum dots induced by surface plasmons,” Appl. Phys. Lett. 96, 073108 (2010). [CrossRef]
  35. J. R. Krenn, A. Dereux, J. C. Weeber, E. Bourillot, Y. Lacroute, J. P. Goudonnet, G. Schider, W. Gotschy, A. Leitner, F. R. Aussenegg, and C. Girard, “Squeezing the optical near-field zone by plasmon coupling of metallic nanoparticles,” Phys. Rev. Lett. 82, 2590–2593 (1999). [CrossRef]
  36. H. Ditlebacher, J. R. Krenn, A. Honenau, A. Leitner, and F. R. Aussenegg, “Efficiency of local light–plasmon coupling,” Appl. Phys. Lett. 83, 3665–3667 (2003). [CrossRef]
  37. K. H. Drexhage, Progress in Optics XII, E. Wolf, ed. (North Holland, 1974).
  38. D. G. Zhang, X. C. Yuan, A. Bouhelier, P. Wang, and H. Ming, “Excitation of surface plasmon polaritons guided mode by rhodamine B molecules doped PMMA stripe,” Opt. Lett 35, 408–410 (2010). [CrossRef]
  39. J. Grandidier, S. Massenot, G. Colas des Francs, A. Bouhelier, J.-C. Weeber, L. Markey, A. Dereux, J. Renger, M. U. Gonzalez, and R. Quidant, “Dielectric-loaded surface plasmon polariton waveguides: figures of merit and mode characterization by image and Fourier plane leakage microscopy,” Phys. Rev. B. 78, 245419 (2008). [CrossRef]
  40. A. Drezet, A. Hohenau, A. L. Stepanov, H. Ditlbacher, B. Steinberger, N. Galler, F. R. Aussenegg, A. Leitner, and J. R. Krenn, “How to erase surface plasmon fringes,” Appl. Phys. Lett. 89, 091117 (2006). [CrossRef]
  41. A. Neogi, C. W. Lee, H. O. Everitt, T. Kuroda, A. Tackeuchi, and E. Yablonovich, “Enhancement of spontaneous recombination rate in a qantum well by resonant surface plasmon coupling,” Phys. Rev. B 66, 153305 (2002). [CrossRef]
  42. J. R. Lakowicz, “Plasmonics in biology and plasmon-controlled fluorescence,” Plasmonics 1, 5–33 (2006). [CrossRef]
  43. C. Sonnichsen, B. M. Reinhard, J. Liphardt, and A. P. Alivisatos, “A molecular ruler based on plasmon coupling of single gold and silver nanoparticles,” Nat. Biotechnol. 23, 741–745 (2005). [CrossRef]
  44. C. Vion, P. Spinicelli, L. Coolen, C. Schwob, J. M. Frigerio, J.-P. Hermier, and A. Maître, “Controlled modification of single colloidal CdSe/ZnS nanocrystal fluorescence through interactions with a gold surface,” Opt. Express 18, 7440–7455 (2010). [CrossRef]
  45. G. Volpe, G. Volpe, and R. Quidant, “Fractal plasmonics: subdiffraction focusing and broad spectral response by a Sierpinski nanocarpet,” Opt. Express 19, 3612–3618 (2011). [CrossRef]
  46. S. Buil, J. Aubineau, J. Laverdant, and X. Quelin, “Local field intensity enhancements on gold semicontinuous films investigated with an aperture nearfield optical microscope in collection mode,” J. Appl. Phys. 100, 063530 (2006). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited