OSA's Digital Library

Journal of the Optical Society of America A

Journal of the Optical Society of America A


  • Editor: Franco Gori
  • Vol. 31, Iss. 5 — May. 1, 2014
  • pp: 952–956

Highly efficient broadband polarization retarders and tunable polarization filters made of composite stacks of ordinary wave plates

E. St. Dimova, S. S. Ivanov, G. St. Popkirov, and N. V. Vitanov  »View Author Affiliations

JOSA A, Vol. 31, Issue 5, pp. 952-956 (2014)

View Full Text Article

Enhanced HTML    Acrobat PDF (449 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



By using the formal analogy between the evolution of the state vector in quantum mechanics and the Jones vector in polarization optics, we construct and demonstrate experimentally efficient broadband half-wave polarization retarders and tunable narrowband polarization filters. Both the broadband retarders and the filters are constructed by the same set of stacked standard multiorder optical wave plates (WPs) rotated at different angles with respect to their fast polarization axes: for a certain set of angles this device behaves as a broadband polarization retarder, while for another set of angles it turns into a narrowband polarization filter. We demonstrate that the transmission profile of our filter can be centered around any desired wavelength in a certain vicinity of the design wavelength of the WPs solely by selecting appropriate rotation angles.

© 2014 Optical Society of America

OCIS Codes
(220.4610) Optical design and fabrication : Optical fabrication
(220.4830) Optical design and fabrication : Systems design
(230.5440) Optical devices : Polarization-selective devices
(260.1440) Physical optics : Birefringence
(260.5430) Physical optics : Polarization
(230.7408) Optical devices : Wavelength filtering devices

ToC Category:
Optical Devices

Original Manuscript: December 13, 2013
Revised Manuscript: February 28, 2014
Manuscript Accepted: March 6, 2014
Published: April 8, 2014

E. St. Dimova, S. S. Ivanov, G. St. Popkirov, and N. V. Vitanov, "Highly efficient broadband polarization retarders and tunable polarization filters made of composite stacks of ordinary wave plates," J. Opt. Soc. Am. A 31, 952-956 (2014)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. D. Grischkowsky, S. R. Keinding, M. van Exter, and C. Fattinger, “Far-infrared time-domain spectroscopy with terahertz beams of dielectrics and semiconductors,” J. Opt. Soc. Am. B 7, 2006–2015 (1990). [CrossRef]
  2. J.-B. Masson and G. Gallot, “Terahertz achromatic quarter-wave plate,” Opt. Lett. 31, 265–267 (2006). [CrossRef]
  3. S. Hanany, J. Hubmayr, B. R. Johnson, T. Matsumura, P. Oxley, and M. Thibodeau, “Millimeter-wave achromatic half-wave plate,” Appl. Opt. 44, 4666–4670 (2005). [CrossRef]
  4. G. Pisano, G. Savini, P. A. R. Ade, V. Hanes, and W. K. Gear, “Achromatic half-wave plate for submillimeter instruments in cosmic microwave background astronomy: experimental characterization,” Appl. Opt. 45, 6982–6989 (2006). [CrossRef]
  5. T. Matsumura, S. Hanany, P. A. R. Ade, B. R. Johnson, T. J. Jones, P. Jonnalagadda, and G. Savini, “Performance of three- and five-stack achromatic half-wave plates at millimeter wavelengths,” Appl. Opt. 48, 3614–3625 (2009). [CrossRef]
  6. C. D. West and A. S. Makas, “The spectral dispersion of birefringence, especially of birefringent plastic sheets,” J. Opt. Soc. Am. 39, 791–794 (1949). [CrossRef]
  7. M. G. Destriau and J. Prouteau, “Réalisation d’un quart d’onde quasi achromatique par juxtaposition de deux lames cristallines de même nature,” J. Phys. Radium 10, 53–55 (1949). [CrossRef]
  8. S. Pancharatnam, “Achromatic combinations of birefringent plates. Part I: an achromatic circular polarizer,” Proc. Indian Acad. Sci. 41, 130–136 (1955).
  9. S. Pancharatnam, “Achromatic combinations of birefringent plates. Part II: an achromatic quarter-WP,” Proc. Indian Acad. Sci. 41, 137–144 (1955).
  10. S. E. Harris, E. O. Ammann, and A. C. Chang, “Optical network synthesis using birefringent crystals. I. Synthesis of lossless networks of equal-length crystals,” J. Opt. Soc. Am. A 54, 1267–1279 (1964). [CrossRef]
  11. C. M. McIntyre and S. E. Harris, “Achromatic wave plates for the visible spectrum,” J. Opt. Soc. Am. A 58, 1575–1580 (1968). [CrossRef]
  12. Z. Zhuang, Y. J. Kim, and J. S. Patel, “Achromatic linear polarization rotator using twisted nematic liquid crystals,” Appl. Phys. Lett. 76, 3995–3997 (2000). [CrossRef]
  13. M. D. Lavrentovich, T. A. Sergan, and J. R. Kelly, “Switchable broadband achromatic half-wave plate with nematic liquid crystals,” Opt. Lett. 29, 1411–1413 (2004). [CrossRef]
  14. A. M. Title and W. J. Rosenberg, “Tunable birefringent filters,” Opt. Eng. 20, 815–823 (1981). [CrossRef]
  15. B. Lyot, “Filter monochromatique polarisant et ses applications en physique solaire,” Ann. Astrophys. 7, 31–79 (1944).
  16. J. W. Evans, “Solc birefringent filter,” J. Opt. Soc. Am. 48, 142–145 (1958). [CrossRef]
  17. I. Šolc, “Birefringent chain filters,” J. Opt. Soc. Am. 55, 621–625 (1965). [CrossRef]
  18. J. M. Beckers, L. Dickson, and R. S. Joyce, “Observing the sun with a fully tunable Lyot-Ohman filter,” Appl. Opt. 14, 2061–2066 (1975). [CrossRef]
  19. G. A. Kopp, M. J. Derks, D. F. Elmore, D. M. Hassler, J. C. Woods, J. L. Streete, and J. G. Blankner, “Tunable liquid-crystal filter for solar imaging at the He i 1083-nm line,” Appl. Opt. 36, 291–296 (1997). [CrossRef]
  20. G. Shabtay, E. Eidinger, Z. Zalevsky, D. Mendlovic, and E. Marom, “Tunable birefringent filters—optimal iterative design,” Opt. Express 10, 1534–1541 (2002). [CrossRef]
  21. I. Abdulhalim, “Polarized optical filtering from general linearly twisted structures,” Opt. Commun. 267, 36–39 (2006). [CrossRef]
  22. I. Abdulhalim, “Effect of the number of sublayers on axial optics of anisotropic helical structures,” Appl. Opt. 47, 3002–3008 (2008). [CrossRef]
  23. O. Aharon and I. Abdulhalim, “Tunable optical filter having a large dynamic range,” Opt. Lett. 34, 2114–2116 (2009). [CrossRef]
  24. O. Aharon and I. Abdulhalim, “Liquid crystal Lyot tunable filter with extended free spectral range,” Opt. Express 17, 11426–11433 (2009). [CrossRef]
  25. G. D. Sharp, K. M. Johnson, and D. Doroski, “Continuously tunable smectic A* liquid-crystal color filter,” Opt. Lett. 15, 523–525 (1990). [CrossRef]
  26. M. H. Levitt, “Composite pulses,” Prog. Nucl. Magn. Reson. Spectrosc. 18, 61–122 (1986). [CrossRef]
  27. H. Häffner, C. F. Roos, and R. Blatt, “Quantum computing with trapped ions,” Phys. Rep. 469, 155–203 (2008). [CrossRef]
  28. N. Timoney, V. Elman, S. Glaser, C. Weiss, M. Johanning, W. Neuhauser, and C. Wunderlich, “Error-resistant single-qubit gates with trapped ions,” Phys. Rev. A 77, 052334 (2008). [CrossRef]
  29. R. C. Jones, “A new calculus for the treatment of optical systems,” J. Opt. Soc. Am. 31, 488–493 (1941). [CrossRef]
  30. A. Ardavan, “Exploiting the Poincaré–Bloch symmetry to design high-fidelity broadband composite linear retarders,” New J. Phys. 9, 24 (2007). [CrossRef]
  31. S. Wimperis, “Broadband, narrowband, and passband composite pulses for use in advanced NMR experiments,” J. Magn. Reson. 109, 221–231 (1994). [CrossRef]
  32. S. S. Ivanov, A. A. Rangelov, N. V. Vitanov, T. Peters, and T. Halfmann, “Highly efficient broadband conversion of light polarization by composite retarders,” J. Opt. Soc. Am. A 29, 265–269 (2012). [CrossRef]
  33. T. Peters, S. S. Ivanov, D. Englisch, A. A. Rangelov, N. V. Vitanov, and T. Halfmann, “Variable ultra-broadband and narrowband composite polarization retarders,” Appl. Opt. 51, 7466–7474 (2012). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited