OSA's Digital Library

Journal of the Optical Society of America A

Journal of the Optical Society of America A

| OPTICS, IMAGE SCIENCE, AND VISION

  • Editor: Franco Gori
  • Vol. 31, Iss. 6 — Jun. 1, 2014
  • pp: 1226–1232

Jones matrices of perfectly conducting metallic polarizers

Philippe Boyer  »View Author Affiliations


JOSA A, Vol. 31, Issue 6, pp. 1226-1232 (2014)
http://dx.doi.org/10.1364/JOSAA.31.001226


View Full Text Article

Enhanced HTML    Acrobat PDF (845 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We deduce by the monomode modal method the analytical expressions of the transmission and reflection Jones matrices of an infinitely conducting metallic screen periodically pierced by subwavelength holes. The study is restricted to normal incidence and to the case of neglected evanescent fields (far-field), which covers many common cases. When only one nondegenerate mode propagates in cavities, they take identical forms to those of a polarizer, with Fabry–Perot-like spectral resonant factors depending on the bigrating parameters. The isotropic or birefringent properties are then obtained when holes support two orthogonal polarization modes. This basic formalism is finally applied to design compact and efficient metallic half-wave plates.

© 2014 Optical Society of America

OCIS Codes
(050.1960) Diffraction and gratings : Diffraction theory
(230.5440) Optical devices : Polarization-selective devices
(260.1960) Physical optics : Diffraction theory
(160.3918) Materials : Metamaterials
(050.6624) Diffraction and gratings : Subwavelength structures

ToC Category:
Diffraction and Gratings

History
Original Manuscript: March 7, 2014
Revised Manuscript: April 12, 2014
Manuscript Accepted: April 14, 2014
Published: May 14, 2014

Citation
Philippe Boyer, "Jones matrices of perfectly conducting metallic polarizers," J. Opt. Soc. Am. A 31, 1226-1232 (2014)
http://www.opticsinfobase.org/josaa/abstract.cfm?URI=josaa-31-6-1226


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. M. Iwanaga, “Photonic metamaterials: a new class of materials for manipulating light waves,” Sci. Tech. Adv. Mater. 13, 053002 (2012). [CrossRef]
  2. X.-F. Ren, P. Zhang, G.-P. Guo, Y.-F. Huang, Z.-W. Wang, and G.-C. Guo, “Polarization properties of subwavelength hole arrays consisting of rectangular holes,” Appl. Phys. B 91, 601–604 (2008). [CrossRef]
  3. Y.-L. Zhang, W. Jin, X.-Z. Dong, Z.-S. Zhao, and X.-M. Duan, “Asymmetric fishnet metamaterials with strong optical activity,” Opt. Express 20, 10776–10787 (2012). [CrossRef]
  4. J. Xu, T. Li, F. F. Lu, S. M. Wang, and S. N. Zhu, “Manipulating optical polarization by stereo plasmonic structure,” Opt. Express 19, 748–756 (2011). [CrossRef]
  5. Ph. Lalanne, J. P. Hugonin, S. Astilean, M. Palamaru, and K. D. Möller, “One-mode model and Airy-like formulae for one-dimensional metallic gratings,” J. Opt. A 2, 48–51 (2000). [CrossRef]
  6. F. J. Garcia-Vidal, L. Martin-Moreno, T. W. Ebbesen, and L. Kuipers, “Light passing through subwavelength apertures,” Rev. Mod. Phys. 82, 729–787 (2010). [CrossRef]
  7. P. Boyer and D. Van Labeke, “Analytical study of resonance conditions in planar resonators,” J. Opt. Soc. Am. A 29, 1659–1666 (2012). [CrossRef]
  8. R. C. McPhedran and D. Maystre, “On the theory and solar application of inductive grids,” Appl. Phys. 14, 1–20 (1977). [CrossRef]
  9. R. Petit, Electromagnetic Theory of Gratings, Topics in Current Physics (Springer-Verlag, 1980).
  10. R. Ulrich, K. F. Renk, and L. Genzel, “Tunable submillimeter interferometers of the Fabry–Perot type,” IEEE Trans. Microwave Theor. Tech. 11, 363–371 (1963). [CrossRef]
  11. R. Ulrich, “Far-infrared properties of metallic mesh and its complementary structure,” Infrared Phys. 7, 37–55 (1967). [CrossRef]
  12. T. Li, S. M. Wang, J. X. Cao, H. Liu, and S. N. Zhu, “Cavity-involved plasmonic metamaterial for optical polarization conversion,” Appl. Phys. Lett. 97, 261113 (2010). [CrossRef]
  13. F. I. Baida, M. Boutria, R. Oussaid, and D. Van Labeke, “Enhanced-transmission metamaterials as anisotropic plates,” Phys. Rev. B 84, 035107 (2011). [CrossRef]
  14. M. Boutria, R. Oussaid, D. Van Labeke, and F. I. Baida, “Tunable artificial chirality with extraordinary transmission metamaterials,” Phys. Rev. B 86, 155428 (2012). [CrossRef]
  15. P. R. McIsaac, “Symmetry-induced modal characteristics of uniform waveguides I: summary of results,” IEEE Trans. Microwave Theor. Tech. 23, 421–429 (1975). [CrossRef]
  16. A. Mary, S. G. Rodrigo, L. Martin-Moreno, and F. J. Garca-Vidal, “Theory of light transmission through an array of rectangular holes,” Phys. Rev. B 76, 195414 (2007). [CrossRef]
  17. Z. Wei, Y. Cao, Y. Fan, X. Yu, and H. Li, “Broadband polarization transformation via enhanced asymmetric transmission through arrays of twisted complementary split-ring resonators,” Appl. Phys. Lett. 99, 221907 (2011). [CrossRef]
  18. N. Kanda, K. Konishi, and M. Kuwata-Gonokami, “Terahertz wave polarization rotation with double layered metal grating of complimentary chiral patterns,” Opt. Express 15, 11117 (2007). [CrossRef]
  19. R. Ortuno, C. Garcia-Meca, F. J. Rodriguez-Fortuno, J. Marti, and A. Martinez, “Role of surface plasmon polaritons on optical transmission through double layer metallic hole arrays,” Phys. Rev. B 79, 075425 (2009). [CrossRef]
  20. T. D. Nguyen, S. Liu, Z. V. Vardeny, and A. Nahata, “Engineering the properties of terahertz filters using multilayer aperture arrays,” Opt. Express 19, 18678–18686 (2011). [CrossRef]
  21. A. Mary, S. G. Rodrigo, L. Martn-Moreno, and F. J. Garca-Vidal, “Holey metal films: from extraordinary transmission to negative-index behavior,” Phys. Rev. B 80, 165431 (2009). [CrossRef]
  22. T. W. H. Oates, B. Dastmalchi, C. Helgert, L. Reissmann, U. Huebner, E.-B. Kley, M. A. Verschuuren, I. Bergmair, T. Pertsch, K. Hinger, and K. Hinrichs, “Optical activity in sub-wavelength metallic grids and fishnet metamaterials in the conical mount,” Opt. Mater. Express 3, 439–451 (2013). [CrossRef]
  23. F. I. Baida and D. Van Labeke, “Light transmission by subwavelength annular aperture arrays in metallic films,” Opt. Commun. 209, 17–22 (2002). [CrossRef]
  24. Z. Chen, C. Wang, Y. Lou, B. Cao, and X. Li, “Quarter-wave plate with subwavelength rectangular annular arrays,” Opt. Commun. 297, 198–203 (2013). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited