Expand this Topic clickable element to expand a topic
Skip to content
Optica Publishing Group

Detailed effects of scattering and absorption by haze and aerosols in the atmosphere on the average point spread function of an imaging system

Not Accessible

Your library or personal account may give you access

Abstract

The Earth’s atmosphere has significant effects on the propagation of electromagnetic (EM) radiation and accordingly degrades the performance of electro-optical systems. These effects are attributed to atmospheric turbulence and to absorption and scattering of EM waves by atmospheric molecules and aerosols. In this paper we develop a detailed model of the effects of absorption and scattering on the optical radiation propagating from the object plane to an imaging system based on the classical theory of EM scattering. Scattering has the effect of de-correlating the light leaving the target from the unscattered light reaching the imaging system, and scattering has the effect of broadening the angle at which the scattered light arrives at the receiver compared to the unscattered light. Absorption has the effect of reducing the amount of power available for the image. Both of these effects depend upon the atmospheric species present, their EM properties, and wavelength. We use this detailed model to compute the average point spread function (PSF) of an imaging system that properly accounts for the effects of the diffraction and scattering, and the appropriate optical power level of both the unscattered and the scattered radiation arriving at the pupil of the imaging system. Since the scattered radiation is temporally and spatially de-correlated from the unscattered radiation, we model the effects of the unscattered radiation and the radiation scattered from the various species as additive in the image plane. The key result of this study is the significant effect of atmospheric scattering on the contrast and spatial resolution of images acquired by imaging systems, due to the increased level of the scattered radiation PSF and the reduced level of the direct radiation PSF, upon increasing the atmospheric optical depth.

© 2014 Optical Society of America

Full Article  |  PDF Article
More Like This
Effects of aerosol scattering phase function formulation on point-spread-function calculations

Patrick Chervet, Claire Lavigne, Antoine Roblin, and Piero Bruscaglioni
Appl. Opt. 41(30) 6489-6498 (2002)

Atmospheric scattering effect on spatial resolution of imaging systems

B. Ben Dor, A. D. Devir, G. Shaviv, P. Bruscaglioni, P. Donelli, and A. Ismaelli
J. Opt. Soc. Am. A 14(6) 1329-1337 (1997)

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Figures (7)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Tables (3)

You do not have subscription access to this journal. Article tables are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Equations (24)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Select as filters


Select Topics Cancel
© Copyright 2024 | Optica Publishing Group. All rights reserved, including rights for text and data mining and training of artificial technologies or similar technologies.