OSA's Digital Library

Journal of the Optical Society of America A

Journal of the Optical Society of America A


  • Editor: Franco Gori
  • Vol. 31, Iss. 7 — Jul. 1, 2014
  • pp: 1436–1444

Quantitative analysis of imperfect frequency multiplying in fractional Talbot planes and its effect on high-frequency-grating lithography

Daniel Thomae, Oliver Sandfuchs, and Robert Brunner  »View Author Affiliations

JOSA A, Vol. 31, Issue 7, pp. 1436-1444 (2014)

View Full Text Article

Enhanced HTML    Acrobat PDF (939 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



Fractional Talbot images of amplitude line gratings, with small opening slits compared to the period, are characterized by an integer multiple of the gratings’ spatial frequency. We investigate the formation of fractional Talbot images analytically within a scalar framework and give a comprehensible insight into the paraxial limits involved. Particular attention is paid to nonparaxial effects on the intensity distribution at fractional Talbot planes and their lateral periodicities. We present a comparison between the measured intensity distributions and a numerical implementation of our analytical method. Both ways reveal the paraxial limits of frequency multiplication on fractional Talbot images. The use of fractional Talbot images for lithography results in ghost diffraction orders. We roughly estimate the ghost orders quantitatively with a simple numerical model for monochromatic and polychromatic illumination.

© 2014 Optical Society of America

OCIS Codes
(050.0050) Diffraction and gratings : Diffraction and gratings
(070.6760) Fourier optics and signal processing : Talbot and self-imaging effects
(220.4000) Optical design and fabrication : Microstructure fabrication

ToC Category:
Fourier Optics and Signal Processing

Original Manuscript: March 14, 2014
Revised Manuscript: April 23, 2014
Manuscript Accepted: April 30, 2014
Published: June 10, 2014

Daniel Thomae, Oliver Sandfuchs, and Robert Brunner, "Quantitative analysis of imperfect frequency multiplying in fractional Talbot planes and its effect on high-frequency-grating lithography," J. Opt. Soc. Am. A 31, 1436-1444 (2014)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. H. F. Talbot, “Facts relating to optical science,” Philos. Mag., Series 3, 9(56), 401–407 (1836).
  2. Rayleigh, “On copying diffraction-gratings, and on some phenomena connected therewith,” Philos. Mag., Series 5, 11(67), 196–205 (1881). [CrossRef]
  3. N. H. Salama, D. Patrignani, L. De Pasquale, and E. E. Sicre, “Wavefront sensor using the Talbot effect,” Opt. Laser Technol. 31, 269–272 (1999). [CrossRef]
  4. C. Siegel, F. Loewenthal, J. E. Balmer, and H. P. Weber, “Talbot array illuminator for single-shot measurements of laser-induced-damage thresholds of thin-film coatings,” Appl. Opt. 39, 1493–1499 (2000). [CrossRef]
  5. M. Wrage, P. Glas, D. Fischer, M. Leitner, N. N. Elkin, D. V. Vysotsky, A. P. Napartovich, and V. N. Troshchieva, “Phase-locking of a multicore fiber laser by wave propagation through an annular waveguide,” Opt. Commun. 205, 367–375 (2002). [CrossRef]
  6. W. B. Case, M. Tomandl, S. Deachapunya, and M. Arndt, “Realization of optical carpets in the Talbot and Talbot-Lau configurations,” Opt. Express 17, 20966–20974 (2009). [CrossRef]
  7. A. Isoyan, F. Jiang, Y. C. Cheng, F. Cerrina, P. Wachulak, L. Urbanski, J. Rocca, C. Menoni, and M. Marconi, “Talbot lithography: self-imaging of complex structures,” J. Vac. Sci. Technol. B 27, 2931 (2009). [CrossRef]
  8. T. J. Suleski, Y.-C. Chuang, P. C. Deguzman, and R. A. Barton, “Fabrication of optical microstructures through fractional Talbot imaging,” Proc. SPIE 5720, 86–93 (2005). [CrossRef]
  9. T. Harzendorf, L. Stuerzebecher, U. Vogler, U. D. Zeitner, and R. Voelkel, “Half-tone proximity lithography,” Proc. SPIE 7716, 77160Y (2010). [CrossRef]
  10. L. Stuerzebecher, T. Harzendorf, U. Vogler, U. D. Zeitner, and R. Voelkel, “Advanced mask aligner lithography: fabrication of periodic patterns using pinhole array mask and Talbot effect,” Opt. Express 18, 19485–19494 (2010). [CrossRef]
  11. D. Thomae, J. Maaß, O. Sandfuchs, A. Gatto, and R. Brunner, “Flexible mask illumination setup for serial multipatterning in Talbot lithography,” Appl. Opt. 53, 1775–1781 (2014). [CrossRef]
  12. H. Weisel, “Über die nach Fresnelscher Art beobachteten Beugungserscheinungen der Gitter,” Annalen der Physik 338, 995–1031 (1910).
  13. J. T. Winthrop and C. R. Worthington, “Theory of Fresnel images I plane periodic objects in monochromatic light,” J. Opt. Soc. Am. 55, 373–380 (1965). [CrossRef]
  14. M. Testorf and J. Jahns, “Planar-integrated Talbot array illuminators,” Appl. Opt. 37, 5399–5407 (1998). [CrossRef]
  15. K.-H. Luo, J. Wen, X.-H. Chen, Q. Liu, M. Xiao, and L.-A. Wu, “Second-order Talbot effect with entangled photon pairs,” Phys. Rev. A 80, 043820 (2009). [CrossRef]
  16. P. M. Mejías and R. Martínez Herrero, “Diffraction by one-dimensional Ronchi grids: on the validity of the Talbot effect,” J. Opt. Soc. Am. 8, 266–269 (1991). [CrossRef]
  17. E. Noponen and J. Turunen, “Electromagnetic theory of Talbot imaging,” Opt. Commun. 98, 132–140 (1993). [CrossRef]
  18. J. W. Goodman, “3.10 the angular spectrum of plane waves,” in Introduction to Fourier Optics, 3rd ed. (Roberts, 2005), pp. 55–61.
  19. E. di Mambro, R. Haïdar, N. Guérineau, and J. Primot, “Sharpness limitations in the projection of thin lines by use of the Talbot experiment,” J. Opt. Soc. Am. 21, 2276–2282 (2004). [CrossRef]
  20. E. G. Loewen, “11.2 spectral purity,” in Diffraction Gratings and Applications, Optical Engineering No. 58 (M. Dekker, 1997), pp. 402–413.
  21. E. G. Loewen, “14.4 accuracy requirements,” in Diffraction Gratings and Applications, Optical Engineering No. 58 (Marcel Dekker, 1997), pp. 507–510.

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited