OSA's Digital Library

Journal of the Optical Society of America A

Journal of the Optical Society of America A


  • Editor: Franco Gori
  • Vol. 31, Iss. 7 — Jul. 1, 2014
  • pp: 1502–1514

Corresponding color datasets and a chromatic adaptation model based on the OSA-UCS system

Claudio Oleari  »View Author Affiliations

JOSA A, Vol. 31, Issue 7, pp. 1502-1514 (2014)

View Full Text Article

Enhanced HTML    Acrobat PDF (452 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



Today chromatic adaptation transforms (CATs) are reconsidered, since their mathematical inconsistency has been shown in Color Res. Appl. 38, 188 (2013) and by the CIE technical committee TC 8-11: CIECAM02 Mathematics. In 2004–2005 the author proposed an adaptation transform based on the uniform color scale system of the Optical Society of America (OSA-UCS) [J. Opt. Soc. Am. A 21, 677 (2004); Color Res. Appl. 30, 31 (2005)] that transforms the cone-activation stimuli into adapted stimuli. The present work considers all the 37 available corresponding color (CC) datasets selected by CIE and (1) shows that the adapted stimuli obtained from CC data are defined up to an unknown transformation, and an unambiguous definition of the adapted stimuli requires additional hypotheses or suitable experimental data (as it is in the OSA-UCS system); (2) produces a CAT, represented by a linear transformation between CCs, associated with any CC dataset, whose high quality measured in ΔE units discards the possibility of nonlinear transformations; (3) analyzes these color-conversion matrices in a heuristic way with a reference adaptation that is approximately that of the OSA-UCS adapted colors for the D65 illuminant and particularly shows accordance with the Hunt effect and the Bezold–Brücke hue shift; (4) proposes the measurements of CC stimuli with a reference adaptation equal to that of the visual situation of the OSA-UCS system for defining adapted colors for any considered illumination adaptation and therefore for defining a general CAT formula.

© 2014 Optical Society of America

OCIS Codes
(330.1720) Vision, color, and visual optics : Color vision
(330.4060) Vision, color, and visual optics : Vision modeling
(330.5510) Vision, color, and visual optics : Psychophysics
(330.7320) Vision, color, and visual optics : Vision adaptation

ToC Category:
Vision, Color, and Visual Optics

Original Manuscript: December 20, 2013
Revised Manuscript: April 9, 2014
Manuscript Accepted: April 30, 2014
Published: June 17, 2014

Virtual Issues
Vol. 9, Iss. 9 Virtual Journal for Biomedical Optics

Claudio Oleari, "Corresponding color datasets and a chromatic adaptation model based on the OSA-UCS system," J. Opt. Soc. Am. A 31, 1502-1514 (2014)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. CIE, “A review of chromatic adaptation transforms,” in CIE 160:2004 (CIE Central Bureau, 2004).
  2. M. R. Luo, “A review of chromatic adaptation transforms,” Rev. Prog. Color. 30, 77–91 (2000).
  3. L. Mori, H. Sobagaki, H. Komatsubara, and K. Ikeda, “Field trials on CIE chromatic adaptation formula,” in Proceedings of the CIE 22nd Session—Division 1, Vienna, Austria (CIE Central Bureau, 1991), pp. 55–58.
  4. J. J. McCann, S. P. McKee, and T. H. Taylor, “Quantitative studies in Retinex theory: a comparison between theoretical predictions and observer responses to the ‘color mondrian’ experiments,” Vis. Res. 16, 445–458 (1976). [CrossRef]
  5. E. J. Breneman, “Corresponding chromaticities for different states of adaptation to complex visual fields,” J. Opt. Soc. Am. A 4, 1115–1129 (1987). [CrossRef]
  6. H. Helson, D. B. Judd, and M. H. Warren, “Object-color changes from daylight to incandescent filament illumination,” lllum. Eng. 47, 221–233 (1952).
  7. K. M. Lam, “Metamerism and colour constancy,” Ph.D. thesis (University of Bradford, 1985).
  8. K. M. Braun and M. D. Fairchild, “Psychophysical generation of matching images for cross-media colour reproduction,” in Proceedings of the 4th IS&T/SID Color Imaging Conference (Curran Associates, Inc., 1996), pp. 214–220.
  9. W. Kuo, M. R. Luo, and H. Bez, “Various chromatic adaptation transforms tested using new colour appearance data in textiles,” Color Res. Appl. 20, 313–327 (1995). [CrossRef]
  10. M. R. Luo, A. A. Clarke, P. A. Rhodes, A. Schappo, S. A. R. Scrivener, and C. J. Tait, “Quantifying colour appearance. Part I. Lutchi colour appearance data,” Color Res. Appl. 16, 166–180 (1991). [CrossRef]
  11. M. H. Brill, “Irregularity in CIECAM02 and its avoidance,” Color Res. Appl. 31, 142–145 (2006). [CrossRef]
  12. M. H. Brill and S. Süsstrunk, “Repairing gamut problems in CIECAM02: a progress report,” Color Res. Appl. 33, 424–426 (2008). [CrossRef]
  13. M. H. Brill and S. Süsstrunk, “Erratum. Repairing gamut problems in CIECAM02: a progress report,” Color Res. Appl. 33, 493 (2008). [CrossRef]
  14. M. H. Brill and M. Mahy, “Visualization of mathematical inconsistencies in CIECAM02,” Color Res. Appl. 38, 188–195 (2013). [CrossRef]
  15. C. Li, M. R. Luo, and Z. Wang, “Different matrices for CIECAM02,” Color Res. Appl. 39, 143–153 (2014). [CrossRef]
  16. M. H. Brill and C. Oleari, “Chromatic adaptation by illuminant matrix products: an alternative to sharpened Von Kries primaries,” Color Res. Appl. 39, 275–278 (2014). [CrossRef]
  17. D. L. MacAdam, “Uniform color scales,” J. Opt. Soc. Am. 64, 1691–1702 (1974). [CrossRef]
  18. D. L. MacAdam, “Colorimetric data for samples of OSA uniform color scales,” J. Opt. Soc. Am. 68, 121–130 (1978). [CrossRef]
  19. C. Oleari, “Color opponencies in the system of the uniform color scales of the Optical Society of America,” J. Opt. Soc. Am. A 21, 677–682 (2004). [CrossRef]
  20. C. Oleari, “Hypotheses for chromatic opponency functions and their performance on classical psychophysical data,” Color Res. Appl. 30, 31–41 (2005). [CrossRef]
  21. C. Oleari, M. Melgosa, and R. Huertas, “Generalization of color-difference formulae for any illuminant and any observer by assuming perfect color constancy in a color-vision model based on the OSA-UCS system,” J. Opt. Soc. Am. A 28, 2226–2234 (2011). [CrossRef]
  22. C. Oleari, F. Fermi, and A. Učakar, “Digital image-color conversion between different illuminants by color-constancy actuation in a color-vision model based on the OSA-UCS system,” Color Res. Appl. 38, 412–422 (2013).
  23. R. W. G. Hunt, C. Li, and M. R. Luo, “Chromatic adaptation transforms,” Color Res. Appl. 30, 69–71 (2005). [CrossRef]
  24. CIE, “A color appearance model for color management systems: CIECAM02,” in CIE 159:2004 (CIE Central Bureau, 2004).
  25. J. J. Kulikowski, A. Daugirdiene, A. Panorgias, R. Stanikunas, H. Vaitkevicius, and I. J. Murray, “Systematic violations of von Kries rule reveal its limitations for explaining color and lightness constancy,” J. Opt. Soc. Am. A 29, A275–A289 (2012). [CrossRef]
  26. A. Chaparro, C. F. Stromeyer, G. Chen, and R. E. Kronauer, “Human cones appear to adapt at low light levels: measurements on the red-green detection mechanism,” Vis. Res. 35, 3103–3118 (1995). [CrossRef]
  27. C. F. Stromeyer, P. D. Gowdy, A. Chaparro, and R. E. Kronauer, “Second-site adaptation in the red-green detection pathway: only elicited by low spatial-frequency test stimuli,” Vis. Res. 39, 3011–3023 (1999). [CrossRef]
  28. C. Oleari, “Inter-observer comparison of color-matching functions,” Color Res. Appl. 24, 177–184 (1999). [CrossRef]
  29. C. Oleari, M. Melgosa, and R. Huertas, “Euclidean color-difference formula for small-medium color differences in log-compressed OSA-UCS space,” J. Opt. Soc. Am. A 26, 121–134 (2009). [CrossRef]
  30. CIE, “Colorimetry,” in CIE 15:2004 (CIE Central Bureau, 2004).
  31. T. Kunkel and E. Reinhard, “A neurophysiology-inspired steady-state color appearance model,” J. Opt. Soc. Am. A 26, 776–782 (2009). [CrossRef]
  32. R. W. G. Hunt, “Light and dark adaptation and the perception of color,” J. Opt. Soc. Am. 42, 190–199 (1952). [CrossRef]
  33. G. Wyszecki and W. S. Stiles, Color Science (Wiley, 1982), p. 422.

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited