## Backscatter analysis based algorithms for increasing transmission through highly scattering random media using phase-only-modulated wavefronts |

JOSA A, Vol. 31, Issue 8, pp. 1788-1800 (2014)

http://dx.doi.org/10.1364/JOSAA.31.001788

Enhanced HTML Acrobat PDF (912 KB)

### Abstract

Recent theoretical and experimental advances have shed light on the existence of so-called “perfectly transmitting” wavefronts with transmission coefficients close to 1 in strongly backscattering random media. These perfectly transmitting eigen-wavefronts can be synthesized by spatial amplitude and phase modulation. Here, we consider the problem of transmission enhancement using phase-only-modulated wavefronts. Motivated by biomedical applications, in which it is not possible to measure the transmitted fields, we develop physically realizable iterative and non-iterative algorithms for increasing the transmission through such random media using backscatter analysis. We theoretically show that, despite the phase-only modulation constraint, the non-iterative algorithms will achieve at least about

© 2014 Optical Society of America

**OCIS Codes**

(030.6600) Coherence and statistical optics : Statistical optics

(290.0290) Scattering : Scattering

(290.5825) Scattering : Scattering theory

**ToC Category:**

Scattering

**History**

Original Manuscript: February 13, 2014

Revised Manuscript: June 5, 2014

Manuscript Accepted: June 5, 2014

Published: July 24, 2014

**Citation**

Curtis Jin, Raj Rao Nadakuditi, Eric Michielssen, and Stephen C. Rand, "Backscatter analysis based algorithms for increasing transmission through highly scattering random media using phase-only-modulated wavefronts," J. Opt. Soc. Am. A **31**, 1788-1800 (2014)

http://www.opticsinfobase.org/josaa/abstract.cfm?URI=josaa-31-8-1788

Sort: Year | Journal | Reset

### References

- O. N. Dorokhov, “Transmission coefficient and the localization length of an electron in N bound disordered chains,” J. Exp. Theor. Phys. Lett. 36, 318–322 (1982).
- C. Barnes and J. B. Pendry, “Multiple scattering of waves in random media: a transfer matrix approach,” P. Roy. Soc. London A Mat. 435, 185–196 (1991).
- J. B. Pendry, A. MacKinnon, and A. B. Pretre, “Maximal fluctuations–a new phenomenon in disordered systems,” Physica A 168, 400–407 (1990). [CrossRef]
- C. W. J. Beenakker, “Applications of random matrix theory to condensed matter and optical physics,” arXiv:0904.1432 (2009).
- P. A. Mello, P. Pereyra, and N. Kumar, “Macroscopic approach to multichannel disordered conductors,” Ann. Phys. 181, 290–317 (1988). [CrossRef]
- I. M. Vellekoop and A. P. Mosk, “Phase control algorithms for focusing light through turbid media,” Opt. Commun. 281, 3071–3080 (2008). [CrossRef]
- I. M. Vellekoop and A. P. Mosk, “Universal optimal transmission of light through disordered materials,” Phys. Rev. Lett. 101, 120601 (2008). [CrossRef]
- J. Aulbach, B. Gjonaj, P. M. Johnson, A. P. Mosk, and A. Lagendijk, “Control of light transmission through opaque scattering media in space and time,” Phys. Rev. Lett. 106, 103901 (2011). [CrossRef]
- M. Cui, “A high speed wavefront determination method based on spatial frequency modulations for focusing light through random scattering media,” Opt. Express 19, 2989–2995 (2011). [CrossRef]
- M. Cui, “Parallel wavefront optimization method for focusing light through random scattering media,” Opt. Lett. 36, 870–872 (2011). [CrossRef]
- M. Kim, Y. Choi, C. Yoon, W. Choi, J. Kim, Q.-H. Park, and W. Choi, “Maximal energy transport through disordered media with the implementation of transmission eigenchannels,” Nat. Photonics 6, 583–587 (2012). [CrossRef]
- T. W. Kohlgraf-Owens and A. Dogariu, “Transmission matrices of random media: means for spectral polarimetric measurements,” Opt. Lett. 35, 2236–2238 (2010). [CrossRef]
- S. M. Popoff, G. Lerosey, R. Carminati, M. Fink, A. C. Boccara, and S. Gigan, “Measuring the transmission matrix in optics: an approach to the study and control of light propagation in disordered media,” Phys. Rev. Lett. 104, 100601 (2010). [CrossRef]
- Z. Shi, J. Wang, and A. Z. Genack, “Measuring transmission eigenchannels of wave propagation through random media,” in Frontiers in Optics (Optical Society of America, 2010).
- C. Stockbridge, Y. Lu, J. Moore, S. Hoffman, R. Paxman, K. Toussaint, and T. Bifano, “Focusing through dynamic scattering media,” Opt. Express 20, 15086–15092 (2012). [CrossRef]
- E. G. van Putten, A. Lagendijk, and A. P. Mosk, “Optimal concentration of light in turbid materials,” J. Opt. Am. Soc. B 28, 1200–1203 (2011).
- A. Ishimaru, Wave Propagation and Scattering in Random Media, IEEE/OUP Series on Electromagnetic Wave Theory (IEEE, 1997).
- E. G. van Putten, I. M. Vellekoop, and A. P. Mosk, “Spatial amplitude and phase modulation using commercial twisted nematic LCDs,” Appl. Opt. 47, 2076–2081 (2008). [CrossRef]
- C. Jin, R. R. Nadakuditi, E. Michielssen, and S. Rand, “An iterative, backscatter-analysis-based algorithm for increasing transmission through a highly backscattering random medium,” in Statistical Signal Processing Workshop (SSP), 2012 (IEEE, 2012), pp. 97–100.
- C. Jin, R. R. Nadakuditi, E. Michielssen, and S. Rand, “Iterative, backscatter-analysis algorithms for increasing transmission and focusing light through highly scattering random media,” J. Opt. Soc. Am. A 30, 1592–1602 (2013). [CrossRef]
- T. J. Dougherty, C. J. Gomer, B. W. Henderson, G. Jori, M. Kessel, D. Korbelik, J. Moan, and Q. Peng, “Photodynamic therapy,” J. Natl. Cancer Inst. 90, 889–905 (1998).
- X. Wang, W. W. Roberts, P. L. Carson, D. P. Wood, and B. J. Fowlkes, “Photoacoustic tomography: a potential new tool for prostate cancer,” Biomed. Opt. Express 1, 1117–1126 (2010). [CrossRef]
- T. Chaigne, J. Gateau, O. Katz, E. Bossy, and S. Gigan, “Light focusing and two-dimensional imaging through scattering media using the photoacoustic transmission matrix with an ultrasound array,” Opt. Lett. 39, 2664–2667 (2014). [CrossRef]
- F. Kong, R. H. Silverman, L. Liu, P. V. Chitnis, K. K. Lee, and Y.-C. Chen, “Photoacoustic-guided convergence of light through optically diffusive media,” Opt. Lett. 36, 2053–2055 (2011). [CrossRef]
- S. T. Smith, “Optimum phase-only adaptive nulling,” IEEE Trans. Signal Process. 47, 1835–1843 (1999).
- S. Zhang and Y. Huang, “Complex quadratic optimization and semi-definite programming,” SIAM J. Optimiz. 16, 871–890 (2006).
- Z.-Q. Luo, W.-K. Ma, A. M.-C. So, Y. Ye, and S. Zhang, “Semi-definite relaxation of quadratic optimization problems,” IEEE Signal Process. Mag. 27(3), 20–34 (2010). [CrossRef]
- R. A. Horn and C. R. Johnson, Matrix Analysis (Cambridge University, 1990).
- M. Goemans and D. P. Williamson, “Improved approximation algorithms for maximum cut and satisfiability problems using semi-definite programming,” J. ACM 42, 1115–1145 (1995). [CrossRef]
- Y. Nesterov, “Semi-definite relaxation and nonconvex quadratic optimization,” Optim. Method Softw. 9, 141–160 (1998).
- Y. Nesterov, H. Wolkowicz, and Y. Ye, “Semi-definite programming relaxations of nonconvex quadratic optimization,” in Handbook of Semidefinite Programming (Springer, 2000), pp. 361–419.
- L. Vandenberghe and S. Boyd, “Semi-definite programming,” SIAM Rev. 38, 49–95 (1996). [CrossRef]
- M. Grant and S. Boyd, “Graph implementations for nonsmooth convex programs,” in Recent Advances in Learning and Control: Lecture Notes in Control and Information Sciences, V. Blondel, S. Boyd, and H. Kimura, eds. (Springer, 2008), pp. 95–110.
- CVX Research Inc., CVX: MATLAB software for disciplined convex programming, version 2.0, http://cvxr.com/cvx .
- K. H. Toh, M. J. Todd, and R. H. Tutuncu, MATLAB, SDPT3 version 4.0.
- G. H. Golub and C. F. Van Loan, Matrix Computations, 4th ed. (JHU, 2012).
- A. M.-C. So, J. Zhang, and Y. Ye, “On approximating complex quadratic optimization problems via semi-definite programming relaxations,” Math. Program. 110, 93–110 (2007). [CrossRef]
- C. R. Rao, Linear Statistical Inference and Its Applications, 2nd ed. Probability and Mathematical Statistics Series (Wiley, 1973).
- M. M. Siddiqui, “Some problems connected with Rayleigh distributions,” J. Res. Nat. Bur. Stand. 660, 167–174 (1962).
- C. Forbes, M. Evans, N. Hastings, and B. Peacock, Statistical Distributions (Wiley, 2011).
- M. Ledoux, The Concentration of Measure Phenomenon (American Mathematical Society, 2005), Vol. 89.
- L. N. Trefethen and D. Bau, Numerical Linear Algebra (Society for Industrial Mathematics, 1997).
- R. C. McPhedran, L. C. Botten, A. A. Asatryan, N. A. Nicorovici, P. A. Robinson, and C. M. De Sterke, “Calculation of electromagnetic properties of regular and random arrays of metallic and dielectric cylinders,” Phys. Rev. E 60, 7614–7617 (1999). [CrossRef]
- A. Sidi, “Practical extrapolation methods,” in Cambridge Monographs on Applied and Computational Mathematics: Theory and Applications (Cambridge University, 2003), Vol. 10.
- S. Singh and R. Singh, “On the use of Shank’s transform to accelerate the summation of slowly converging series,” IEEE Trans. Microwave Theor. Tech. 39, 608–610 (1991).
- W. Choi, A. P. Mosk, Q.-H. Park, and W. Choi, “Transmission eigenchannels in a disordered medium,” Phys. Rev. B 83, 134207 (2011). [CrossRef]

## Cited By |
Alert me when this paper is cited |

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article | Next Article »

OSA is a member of CrossRef.