Expand this Topic clickable element to expand a topic
Skip to content
Optica Publishing Group

Scattering of a plane wave by a radially stratified tilted cylinder

Not Accessible

Your library or personal account may give you access

Abstract

We calculate the intensity of the light scattered by an infinite, radially stratified cylinder. The incident light is a plane wave having an arbitrary angle of incidence and an arbitrary polarization. The Hertz potentials of the scattered wave are represented as superpositions of conical waves, and the boundary-value method is used to derive an infinite set of systems of linear equations for the expansion coefficients. The intensity and the polarization of the far-field scattered wave is expressed in terms of these expansion coefficients. Numerical results showing the angular distribution of the scattered intensity corresponding to different angles of incidence are also presented for the case of a doubly clad image-transmitting fiber illuminated by a He–Ne laser.

© 1987 Optical Society of America

Full Article  |  PDF Article
More Like This
Plane-wave scattering by a conducting cylinder partially buried in a ground plane. 1. TM case

Tenneti C. Rao and Richard Barakat
J. Opt. Soc. Am. A 6(9) 1270-1280 (1989)

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Figures (6)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Equations (69)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Select as filters


Select Topics Cancel
© Copyright 2024 | Optica Publishing Group. All Rights Reserved