OSA's Digital Library

Journal of the Optical Society of America A

Journal of the Optical Society of America A

| OPTICS, IMAGE SCIENCE, AND VISION

  • Vol. 10, Iss. 1 — Jan. 1, 1993
  • pp: 75–87

Aperture realizations of exact solutions to homogeneous-wave equations

Richard W. Ziolkowski, Ioannis M. Besieris, and Amr M. Shaarawi  »View Author Affiliations


JOSA A, Vol. 10, Issue 1, pp. 75-87 (1993)
http://dx.doi.org/10.1364/JOSAA.10.000075


View Full Text Article

Enhanced HTML    Acrobat PDF (1398 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Several new classes of localized solutions to the homogeneous scalar wave and Maxwell’s equations have been reported recently. Theoretical and experimental results have now clearly demonstrated that remarkably good approximations to these acoustic and electromagnetic localized-wave solutions can be achieved over extended near-field regions with finite-sized, independently addressable, pulse-driven arrays. We demonstrate that only the forward-propagating (causal) components of any homogeneous solution of the scalar-wave equation are actually recovered from either an infinite- or a finite-sized aperture in an open region. The backward-propagating (acausal) components result in an evanescent-wave superposition that plays no significant role in the radiation process. The exact, complete solution can be achieved only from specifying its values and its derivatives on the boundary of any closed region. By using those localized-wave solutions whose forward-propagating components have been optimized over the associated backward-propagating terms, one can recover the desirable properties of the localized-wave solutions over the extended near-field regions of a finite-sized, independently addressable, pulse-driven array. These results are illustrated with an extreme exampl—one dealing with the original solution, which is superluminal, and its finite aperture approximation, a slingshot pulse.

© 1993 Optical Society of America

History
Original Manuscript: January 21, 1992
Revised Manuscript: July 13, 1992
Manuscript Accepted: July 28, 1992
Published: January 1, 1993

Citation
Richard W. Ziolkowski, Ioannis M. Besieris, and Amr M. Shaarawi, "Aperture realizations of exact solutions to homogeneous-wave equations," J. Opt. Soc. Am. A 10, 75-87 (1993)
http://www.opticsinfobase.org/josaa/abstract.cfm?URI=josaa-10-1-75

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

If you are accessing the full text through a member bundle, please use the Enhanced HTML link to gain access to the citation lists and other restricted features. Note that accessing both the PDF and HTML versions of an article will count as only one download against your account.

Contact your librarian or system administrator
or
Log in to access OSA Member Subscription

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

If you are accessing the full text through a member bundle, please use the Enhanced HTML link to gain access to the citation lists and other restricted features. Note that accessing both the PDF and HTML versions of an article will count as only one download against your account.

Contact your librarian or system administrator
or
Log in to access OSA Member Subscription

You do not have subscription access to this journal. Article level metrics are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

If you are accessing the full text through a member bundle, please use the Enhanced HTML link to gain access to the citation lists and other restricted features. Note that accessing both the PDF and HTML versions of an article will count as only one download against your account.

Contact your librarian or system administrator
or
Log in to access OSA Member Subscription

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited