OSA's Digital Library

Journal of the Optical Society of America A

Journal of the Optical Society of America A

| OPTICS, IMAGE SCIENCE, AND VISION

  • Vol. 10, Iss. 10 — Oct. 1, 1993
  • pp: 2105–2117

Aberration-free measurements of the visibility of isoluminant gratings

Nobutoshi Sekiguchi, David R. Williams, and David H. Brainard  »View Author Affiliations


JOSA A, Vol. 10, Issue 10, pp. 2105-2117 (1993)
http://dx.doi.org/10.1364/JOSAA.10.002105


View Full Text Article

Enhanced HTML    Acrobat PDF (1860 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We developed a new apparatus and psychophysical technique to extend isoluminant contrast-sensitivity measurements to high spatial frequencies. The apparatus consists of two identical laser interferometers that are designed to produce phase-locked two-color interference fringes on the retina without the influence of diffraction and most aberrations in the eye. However, even with interferometry, transverse chromatic aberration of the eye can produce a wavelength-dependent phase shift in the interference fringes, which can be exaggerated by head movements. To reduce the effect of head movements, isoluminant red and green interference fringes of equal spatial frequency and orientation were drifted slowly in opposite directions to guarantee a purely isochromatic (in phase) and a purely isoluminant (out of phase) stimulus during each cycle of stimulus presentation. With this technique we found that observers could resolve red and green stripes at spatial frequencies higher than 20 cycles per degree (c/deg) (20–27 c/deg), substantially higher than has previously been reported. This places a lower bound on the sampling density of neurons that mediate color vision. At all spatial frequencies, even those above the isoluminant resolution limit, a relative phase of the red and the green components could be found that obliterated the appearance of luminance modulation at the fringe frequency. Above the resolution limit, red–green-isoluminant interference fringes are seen as spatial noise, which may be chromatic aliasing caused by spatial sampling at some stage in the chromatic pathway.

© 1993 Optical Society of America

History
Original Manuscript: August 19, 1992
Revised Manuscript: April 7, 1993
Manuscript Accepted: April 8, 1993
Published: October 1, 1993

Citation
Nobutoshi Sekiguchi, David R. Williams, and David H. Brainard, "Aberration-free measurements of the visibility of isoluminant gratings," J. Opt. Soc. Am. A 10, 2105-2117 (1993)
http://www.opticsinfobase.org/josaa/abstract.cfm?URI=josaa-10-10-2105


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. O. H. Schade, “On the quality of color-television images and the perception of color detail,”J. Soc. Motion Picture Telev. Eng. 67, 801–819 (1958).
  2. G. J. C. Van der Horst, C. M. M. De Weert, M. A. Boumann, “Transfer of spatial chromaticity-contrast at threshold in the human eye,”J. Opt. Soc. Am. 57, 1260–1266 (1967). [CrossRef] [PubMed]
  3. G. J. C. Van der Horst, M. A. Boumann, “Spatiotemporal chromaticity discrimination,”J. Opt. Soc. Am. 59, 1482–1488 (1969). [CrossRef] [PubMed]
  4. R. Hilz, C. R. Cavonius, “Wavelength discrimination measured with square-wave gratings,”J. Opt. Soc. Am. 60, 273–277 (1970). [CrossRef] [PubMed]
  5. E. M. Granger, J. C. Heurtley, “Visual chromaticity-modulation transfer function,”J. Opt. Soc. Am. 63, 1173–1174 (1973). [CrossRef] [PubMed]
  6. C. Noorlander, M. J. G. Heuts, J. J. Koenderink, “Influence of the target size on the detection threshold for luminance and chromaticity contrast,”J. Opt. Soc. Am. 70, 1116–1121 (1980). [CrossRef] [PubMed]
  7. K. T. Mullen, “The contrast sensitivity of human color vision to red–green and blue–yellow chromatic gratings,” J. Physiol. 359, 381–400 (1985).
  8. K. T. Mullen, “Colour vision as a post-receptoral specialization of the central visual field,” Vision Res. 31, 119–130 (1991). [CrossRef] [PubMed]
  9. S. J. Anderson, K. T. Mullen, R. F. Hess, “Human peripheral spatial resolution for achromatic and chromatic stimuli: limits imposed by optical and retinal factors,” J. Physiol. 442, 47–64 (1991). [PubMed]
  10. Y. Le Grand, “Sur la mesure de l’acuité visuelle au moyen de franges d’interférence,”C. R. Acad. Sci. Paris 200, 490–491.
  11. F. W. Campbell, D. G. Green, “Optical and retinal factors affecting visual resolution,” J. Physiol. 181, 576–593 (1965). [PubMed]
  12. D. R. Williams, “Aliasing in human foveal vision,” Vision Res. 25, 195–205 (1985). [CrossRef] [PubMed]
  13. L. N. Thibos, A. Bradley, D. L. Still, “Interferometric measurement of visual acuity and the effect of ocular chromatic aberration,” Appl. Opt. 30, 2079–2087 (1991). [CrossRef] [PubMed]
  14. N. Sekiguchi, D. R. Williams, D. H. Brainard, “Efficiency in detection of isoluminant and isochromatic interference fringes,” J. Opt. Soc. Am. A 10, 2118–2133 (1993). [CrossRef]
  15. S. Mallick, “Common-path interferometers,” in Optical Shop Testing, D. Malacara, ed. (Wiley, New York, 1978), pp. 81–104.
  16. W. H. Steel, Interferometry, 2nd ed. (Cambridge U. Press, Cambridge, 1983).
  17. D. R. Williams, “Visibility of interference fringes near the resolution limit,” J. Opt. Soc. Am. A 2, 1087–1093 (1985). [CrossRef] [PubMed]
  18. N. J. Coletta, D. R. Williams, C. L. M. Tiana, “Consequences of spatial sampling for human motion perception,” Vision Res. 30, 1631–1648 (1990). [CrossRef] [PubMed]
  19. G. J. Burton, “Evidence for non-linear response processes in the human visual system from measurements on the threshold of spatial beat frequencies,” Vision Res. 13, 1211–1225 (1973). [CrossRef] [PubMed]
  20. D. I. A. MacLeod, D. R. Williams, W. Makous, “A visual nonlinearity fed by single cones,” Vision Res. 32, 347–363 (1992). [CrossRef] [PubMed]
  21. N. Sekiguchi, D. R. Williams, O. Packer, “Nonlinear distortion of gratings at the foveal resolution limit,” Vision Res. 31, 815–831 (1991). [CrossRef] [PubMed]
  22. S. Anstis, P. Cavanagh, “A minimum motion technique for judging equiluminance,” in Colour Vision, J. D. Mollon, L. T. Sharpe, eds. (Academic, London, 1983), pp. 155–166.
  23. K. K. De Valois, E. Switkes, “Simultaneous masking interactions between chromatic and luminance gratings,”J. Opt. Soc. Am. 73, 11–18 (1983). [CrossRef] [PubMed]
  24. E. Switkes, A. Bradley, K. K. De Valois, “Contrast dependence and mechanisms of masking interactions among chromatic and luminance gratings,” J. Opt. Soc. Am. A 5, 1149–1162 (1988). [CrossRef] [PubMed]
  25. F. W. Campbell, R. W. Gubisch, “The effect of chromatic aberration on visual acuity,” J. Physiol. 192, 345–358 (1966).
  26. X. Zhang, A. Bradley, L. N. Thibos, “Achromatizing the human eye: the problem of chromatic parallax,” J. Opt. Soc. Am. A 8, 686–691 (1991). [CrossRef] [PubMed]
  27. F. W. Campbell, R. H. S. Carpenter, J. Z. Levinson, “Visibility of aperiodic patterns compared with that of sinusoidal gratings,” J. Physiol. 204, 283–298 (1969). [PubMed]
  28. D. H. Kelly, “Effects of sharp edges on the visibility of sinusoidal gratings,”J. Opt. Soc. Am. 60, 98–103 (1970). [CrossRef]
  29. A. B. Watson, D. G. Pelli, “QUEST: a Bayesian adaptive psychometric method,” Percept. Psychophys. 33, 113–120 (1983). [CrossRef] [PubMed]
  30. O. Packer, D. R. Williams, N. Sekiguchi, N. J. Coletta, S. Galvin, “Effects of chromatic adaptation on foveal acuity and aliasing,” Invest. Ophthal. Vis. Sci. Suppl. 30, 53 (1989).
  31. O. Packer, D. R. Williams, “Blurring by fixational eye movements,” Vision Res. 32, 1931–1939 (1992). [CrossRef] [PubMed]
  32. P. Cavanagh, S. Anstis, G. Mather, “Screening for color blindness using optokinetic nystagmus,” Invest. Ophthalmol. Vis. Sci. 25, 463–466 (1984). [PubMed]
  33. P. Cavanagh, D. I. A. MacLeod, S. M. Anstis, “Equiluminance: spatial and temporal factors and the contribution of blue-sensitive cones,” J. Opt. Soc. Am. A 4, 1428–1438 (1987). [CrossRef] [PubMed]
  34. C. R. Cavonius, A. W. Schumacher, “Human visual acuity measured with colored test objects,” Science 152, 1276–1277 (1966). [CrossRef] [PubMed]
  35. D. R. Williams, N. J. Coletta, “Cone spacing and the visual resolution limit,” J. Opt. Soc. Am. A 4, 1514–1523 (1987). [CrossRef] [PubMed]
  36. D. R. Williams, N. Sekiguchi, W. Haake, D. Brainard, O. Packer, “The cost of trichromacy for spatial vision,” in From Pigments to Perception, A. Valberg, B. B. Lee, eds. (Plenum, New York, 1991), pp. 11–22. [CrossRef]
  37. D. Brewster, “On the undulations excited in the retina by the action of luminous points and lines,” London Edinburgh Philos. Mag. J. Sci. 1, 169–174 (1832).
  38. J. Krauskopf, “Color appearance of small stimuli and the spatial distribution of color receptors,”J. Opt. Soc. Am. 54, 1171 (1964). [CrossRef]
  39. J. Krauskopf, “On identifying detectors,” in Visual Psychophysics and Physiology, J. C. Armington, J. Krauskopf, B. R. Wooten, eds. (Academic, New York, 1978), pp. 283–295. [CrossRef]
  40. J. Krauskopf, R. Srebro, “Spectral sensitivity of color mechanisms: derivation from fluctuations of color appearance near threshold,” Science 150, 1477–1479 (1965). [CrossRef] [PubMed]
  41. C. M. Cicerone, J. L. Nerger, “The relative numbers of long-wavelength-sensitive to middle-wavelength-sensitive cones in the human fovea centralis,” Vision Res. 29, 115–128 (1989). [CrossRef] [PubMed]
  42. R. L. P. Vimal, J. Pokorny, V. C. Smith, S. K. Shevell, “Foveal cone thresholds,” Vision Res. 29, 61–78 (1989). [CrossRef] [PubMed]
  43. Y. Le Grand, Form and Space Vision, M. Milldot, G. G. Heath, eds. (Indiana U. Press, Bloomington, Ind., 1967), pp. 5–23.
  44. L. Riggs, J. C. Armington, “Motions of the retinal image during fixation,”J. Opt. Soc. Am. 44, 315–321 (1954). [CrossRef] [PubMed]
  45. H. C. Bennet-Clark, “The oculomotor response to small target displacements,” Opt. Acta 11, 301–314 (1964). [CrossRef]
  46. R. M. Steinman, G. M. Haddad, A. A. Skavenski, D. Wyman, “Miniature eye movement,” Science 181, 810–819 (1973). [CrossRef] [PubMed]
  47. M. Eizenman, P. E. Hallett, R. C. Frecker, “Power spectra for ocular drift and tremor,” Vision Res. 25, 1635–1640 (1985). [CrossRef] [PubMed]
  48. D. R. Williams, “Visual consequences of the foveal pit,” Invest. Ophthalmol. Vis. Sci. 19, 653–667 (1980). [PubMed]
  49. P. Simonet, M. C. W. Campbell, “The optical transverse chromatic aberration on the fovea of the human eye,” Vision Res. 31, 187–206 (1990). [CrossRef]
  50. A. B. Poirson, B. A. Wandell, “Task-dependent color discrimination,” J. Opt. Soc. Am. A 7, 776–782 (1990). [CrossRef] [PubMed]
  51. A. B. Poirson, B. A. Wandell, D. C. Verner, D. H. Brainard, “Surface characterizations of color thresholds,” J. Opt. Soc. Am. A 7, 783–789 (1990). [CrossRef] [PubMed]
  52. A. B. Poirson, “Appearance and detection of colored patterns,” Ph.D. dissertation (Stanford University, Stanford, Calif., 1992).
  53. K. Kranda, P. E. King-Smith, “Detection of coloured stimuli by independent linear systems,” Vision Res. 19, 733–746 (1979). [CrossRef] [PubMed]
  54. C. F. Stromeyer, G. R. Cole, R. E. Kronauer, “Second-site adaptation in the red–green chromatic pathways,” Vision Res. 25, 219–237 (1985). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited