OSA's Digital Library

Journal of the Optical Society of America A

Journal of the Optical Society of America A

| OPTICS, IMAGE SCIENCE, AND VISION

  • Vol. 10, Iss. 10 — Oct. 1, 1993
  • pp: 2166–2180

Color constancy. II. Results for two-stage linear recovery of spectral descriptions for lights and surfaces

Michael D’Zmura and Geoffrey Iverson  »View Author Affiliations


JOSA A, Vol. 10, Issue 10, pp. 2166-2180 (1993)
http://dx.doi.org/10.1364/JOSAA.10.002166


View Full Text Article

Enhanced HTML    Acrobat PDF (2140 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Our analysis of color constancy in a companion paper [ J. Opt. Soc. Am A 10, 2148 ( 1993)] provided an algorithm that lets one test how well linear color constancy schemes work. Here we present the results of applying the algorithm to a large parametric class of color constancy problems involving bilinear models that relate photoreceptoral spectral sensitivities, surface reflectance functions, and illuminant spectral power distributions. These results, supported by simulation and further analysis, provide a detailed classification of two-stage linear methods for recovering the spectral properties of reflectances and illuminants from reflected lights.

© 1993 Optical Society of America

History
Original Manuscript: October 21, 1992
Revised Manuscript: April 8, 1993
Manuscript Accepted: April 13, 1993
Published: October 1, 1993

Citation
Michael D’Zmura and Geoffrey Iverson, "Color constancy. II. Results for two-stage linear recovery of spectral descriptions for lights and surfaces," J. Opt. Soc. Am. A 10, 2166-2180 (1993)
http://www.opticsinfobase.org/josaa/abstract.cfm?URI=josaa-10-10-2166


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. M. D’Zmura, G. Iverson, “Color constancy. I. Basic theory of two-stage linear recovery of spectral descriptions for lights and surfaces,” J. Opt. Soc. Am. A 10, 2148–2165, (1993). [CrossRef]
  2. L. T. Maloney, B. A. Wandell, “Color constancy: a method for recovering surface spectral reflectance,” J. Opt. Soc. Am. A 3, 29–33 (1986). [CrossRef] [PubMed]
  3. M. D’Zmura, “Color constancy: surface color from changing illumination,” J. Opt. Soc. Am. A 9, 490–493 (1992). [CrossRef]
  4. M. D’Zmura, G. Iverson, “Color structure from chromatic motion,” in Annual Meeting, Vol. 23 of 1992 OSA Technical Digest Series (Optical Society of America, Washington, D.C., 1992), p. 51.
  5. E. Anderson, Z. Bai, C. Bischof, J. Demmel, J. Dongarra, A. DuCroz, S. Greenbaum, S. Hammarling, A. McKenney, S. Ostrouchov, D. Sorensen, lapack User’s Guide (Society for Industrial and Applied Mathematics, Philadelphia, Pa., 1992).
  6. G. Strang, Linear Algebra and Its Applications, 3rd ed. (Harcourt Brace Jovanovitch, San Diego, Calif., 1988).
  7. W. H. Press, B. P. Flannery, S. A. Teukolsky, W. T. Vetterling, Numerical Recipes in C. The Art of Scientific Computing (Cambridge U. Press, New York, 1988).
  8. V. C. Smith, J. Pokorny, “Spectral sensitivity of the foveal cone photopigments between 400 and 500 nm,” Vision Res. 15, 161–171 (1975). [CrossRef] [PubMed]
  9. D. B. Judd, D. L. MacAdam, G. Wyszecki, “Spectral distribution of typical daylight as a function of correlated color temperature,”J. Opt. Soc. Am. 54, 1031–1040 (1964). [CrossRef]
  10. G. Wyszecki, W. S. Stiles, Color Science. Concepts and Methods, Quantitative Data and Formulas, 2nd ed. (Wiley, New York, 1982).
  11. J. Cohen, “Dependency of the spectral reflectance curves of the Munsell color chips,” Psychonom. Sci. 1, 369–370 (1964).
  12. E. R. Dixon, “Spectral distribution of Australian daylight,”J. Opt. Soc. Am. 68, 437–450 (1978). [CrossRef]
  13. J. P. S. Parkkinen, J. Hallikainen, T. Jaaskelainen, “Characteristic spectra of Munsell colors,” J. Opt. Soc. Am. A 6, 318–322 (1989). [CrossRef]
  14. L. M. Hurvich, D. Jameson, “Some quantitative aspects of an opponent-color theory. II. Brightness, saturation, and hue in normal and dichromatic vision,”J. Opt. Soc. Am. 45, 602–616 (1955). [CrossRef] [PubMed]
  15. M. Tsukada, Y. Ohta, “An approach to color constancy using multiple images,” Proc. Third Int. Conf. Comput. Vis. 3, 385–393 (1990).
  16. M. H. Brill, T. Benzschawel, “Remarks on signal-processing explanations of the trichromacy of vision,” J. Opt. Soc. Am. A 2, 1794–1796 (1985). [CrossRef] [PubMed]
  17. B. A. Wandell, L. T. Maloney, “Color imaging process,” U.S. patent4,648,051 (March3, 1987).
  18. L. T. Maloney, “Computational approaches to color constancy,” Stanford Applied Psychology Laboratory Tech. Rep. 1985-01 (Stanford University, Stanford, Calif., 1985).
  19. G. Iverson, M. D’Zmura, “Criteria for color constancy in trichromatic bilinear models,” UC Irvine Institute for Mathematical Behavioral Sciences Tech. Rep. 93-18 (University of California, Irvine, Irvine, Calif., 1993).
  20. J. J. McCann, S. P. McKee, T. H. Taylor, “Quantitative studies in retinex theory. A comparison between theoretical predictions and observer responses to the ‘color Mondrian’ experiments,” Vision Res. 16, 445–458 (1976). [CrossRef]
  21. L. Arend, A. Reeves, “Simultaneous color constancy,” J. Opt. Soc. Am. A 3, 1743–1751 (1986). [CrossRef] [PubMed]
  22. L. E. Arend, A. Reeves, J. Schirillo, R. Goldstein, “Simultaneous color constancy: papers with diverse Munsell values,” J. Opt. Soc. Am. A 8, 661–672 (1991). [CrossRef] [PubMed]
  23. D. Brainard, B. A. Wandell, “A bilinear model of the illuminant’s effect on color appearance,” in Computational Models of Visual Processing, M. Landy, J. A. Movshon, eds. (MIT Press, Cambridge, Mass., 1991), pp. 171–186.
  24. E. H. Land, “Recent advances in retinex theory and some implications for cortical computations: color vision and the natural image,” Proc. Natl. Acad. Sci. USA 80, 5163–5169 (1983). [CrossRef] [PubMed]
  25. E. H. Land, “Recent advances in retinex theory,” Vision Res. 26, 7–21 (1986). [CrossRef] [PubMed]
  26. E. H. Land, N. W. Daw, “Colors seen in a flash of light,” Proc. Natl. Acad. Sci. USA 48, 1000–1008 (1962). [CrossRef] [PubMed]
  27. D. B. Judd, “Hue, saturation and lightness of surface colors with chromatic illumination,”J. Opt. Soc. Am. 30, 2–32 (1940). [CrossRef]
  28. J. A. Worthey, M. H. Brill, “Heuristic analysis of von Kries color constancy,” J. Opt. Soc. Am. A 3, 1708–1712 (1986). [CrossRef] [PubMed]
  29. G. Buchsbaum, “A spatial processor model for object colour perception,” J. Franklin Inst. 310, 1–26 (1980). [CrossRef]
  30. D. Brainard, B. A. Wandell, “An analysis of the retinex theory of color vision,” J. Opt. Soc. Am. A 3, 1651–1661 (1986). [CrossRef] [PubMed]
  31. D. I. A. MacLeod, “Receptoral constraints on colour appearance,” in Central and Peripheral Mechanisms of Colour Vision, D. Ottoson, S. Zeki, eds. (Macmillan, London, 1985), pp. 103–116.
  32. M. D’Zmura, P. Lennie, “Mechanisms of color constancy,” J. Opt. Soc. Am. A 3, 1662–1672 (1986). [CrossRef]
  33. M. Fairchild, P. Lennie, “Chromatic adaptation to natural and incandescent illuminants,” Vision Res. 32, 2077–2085 (1992). [CrossRef] [PubMed]
  34. S. Ahn, D. I. A. MacLeod, “Adaptation in the chromatic and luminance channels,” Invest. Ophthalmol. Vis. Sci. Suppl. 31, 109 (1990).
  35. E. H. Adelson, J. Bergen, “Spatiotemporal energy models for the perception of motion,” J. Opt. Soc. Am. A 2, 284–299 (1985). [CrossRef] [PubMed]
  36. E. H. Adelson, J. Bergen, “The plenoptic function and the elements of early vision,” in Computational Models of Visual Processing, M. Landy, J. A. Movshon, eds. (MIT Press, Cambridge, Mass., 1991), pp. 3–20.
  37. C. R. Michael, “Color vision mechanisms in monkey striate cortex: dual-opponent cells with concentric receptive fields,” J. Neurophysiol. 41, 572–588 (1978). [PubMed]
  38. P. Lennie, J. Krauskopf, G. Sclar, “Chromatic mechanisms in striate cortex of macaque,” J. Neurosci. 10, 649–669 (1990). [PubMed]
  39. D. Y. Ts’o, C. D. Gilbert, “The organization of chromatic and spatial interactions in the primate striate cortex,” J. Neurosci. 8, 1712–1727 (1988).
  40. M. S. Livingstone, D. H. Hubel, “Anatomy and physiology of a color system in primate primary visual cortex,” J. Neurosci. 4, 309–356 (1984). [PubMed]
  41. S. M. Zeki, “Colour coding in the cerebral cortex: the reaction of cells in monkey visual cortex to wavelengths and colours,” Neuroscience 9, 741–765 (1983). [CrossRef] [PubMed]
  42. S. M. Zeki, “Colour coding in the cerebral cortex: the response of wavelength-selective and colour-coded cells in monkey visual cortex to changes in wavelength composition,” Neuroscience 9, 767–781 (1983). [CrossRef] [PubMed]
  43. H. M. Wild, S. R. Butler, D. Carden, J. J. Kulikowski, “Primate cortical area V4 important for colour constancy but not wavelength discrimination,” Nature 313, 133–135 (1985). [CrossRef]
  44. C. A. Heywood, A. Cowey, “On the role of cortical area V4 in the discrimination of hue and pattern in macaque monkeys,” J. Neurosci. 7, 2601–2617 (1987). [PubMed]
  45. P. E. Haenny, P. H. Schiller, “State dependent activity in monkey visual cortex—I. Single cell activity in V1 and V4 on visual tasks,” Exp. Brain Res. 69, 225–244 (1988). [CrossRef]
  46. S. J. Schein, R. Desimone, “Spectral properties of V4 neurons in macaque,” J. Neurosci. 10, 3369–3389 (1990). [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited