OSA's Digital Library

Journal of the Optical Society of America A

Journal of the Optical Society of America A


  • Vol. 10, Iss. 10 — Oct. 1, 1993
  • pp: 2217–2225

Effective-medium theory of zeroth-order lamellar gratings in conical mountings

Charles W. Haggans, Lifeng Li, and Raymond K. Kostuk  »View Author Affiliations

JOSA A, Vol. 10, Issue 10, pp. 2217-2225 (1993)

View Full Text Article

Enhanced HTML    Acrobat PDF (1244 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



A formalism is presented for calculating the ordinary and extraordinary refractive indices for a uniaxial film with optical properties equivalent to those of a conically mounted zeroth-order lamellar grating. In the quasi-static limit (grating-period-to-wavelength ratio → 0) this treatment is exact for both dielectric and metallic gratings. For period-to-wavelength ratios approaching unity, the effective anisotropic refractive indices are dependent on the polar and azimuthal incidence angles. The validity of this method as the period-to-wavelength ratio increases is studied by comparison of the method with the predictions of rigorous grating theories. Comparisons are then made with the predictions of other effective-medium theories. Examples of the use of this theory for conically mounted zeroth-order gratings are presented.

© 1993 Optical Society of America

Original Manuscript: November 30, 1992
Revised Manuscript: April 19, 1993
Manuscript Accepted: April 26, 1993
Published: October 1, 1993

Charles W. Haggans, Raymond K. Kostuk, and Lifeng Li, "Effective-medium theory of zeroth-order lamellar gratings in conical mountings," J. Opt. Soc. Am. A 10, 2217-2225 (1993)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. R. C. Enger, S. K. Case, “Optical elements with ultrahigh spatial-frequency surface corrugations,” Appl. Opt. 22, 3220–3228 (1983). [CrossRef] [PubMed]
  2. D. C. Flanders, “Submicrometer periodicity gratings as artificial anisotropic dielectrics,” Appl. Phys. Lett. 42, 492–494 (1983). [CrossRef]
  3. M. L. Minden, G. J. Dunning, “Polarization-dependent phase shift in high-efficiency gratings,” in Periodic Structures, Gratings, Moiré Patterns, and Diffraction Phenomena I, C. H. Chi, ed., Proc. Soc. Photo-Opt. Instrum. Eng.240, 249–254 (1980). [CrossRef]
  4. L. H. Cescato, E. Gluch, N. Streibl, “Holographic quarter-wave plates,” Appl. Opt. 29, 3286–3290 (1990). [CrossRef] [PubMed]
  5. C. W. Haggans, L. Li, T. Fujita, R. K. Kostuk, “Lamellar gratings as polarization components for specularly reflected beams,” J. Mod. Opt. 40, 675–686 (1993). [CrossRef]
  6. G. P. Bryan-Brown, J. R. Sambles, M. C. Hutley, “Polarization conversion through the excitation of surface plasmons on a metallic grating,” J. Mod. Opt. 37, 1227–1232 (1990). [CrossRef]
  7. Y.-L. Kok, N. C. Gallagher, “Relative phases of electromagnetic waves diffracted by a perfectly conducting rectangular-grooved grating,” J. Opt. Soc. Am. A 5, 65–73 (1988). [CrossRef] [PubMed]
  8. S. S. H. Naqvi, N. C. Gallagher, “Analysis of a strip-grating twist reflector,” J. Opt. Soc. Am. A 7, 1723–1729 (1990). [CrossRef]
  9. T. K. Gaylord, W. E. Baird, M. G. Moharam, “Zero-reflectivity high spatial-frequency rectangular-groove dielectric surface-relief gratings,” Appl. Opt. 25, 4562–4567 (1986). [CrossRef] [PubMed]
  10. Y. Ono, Y. Kimura, Y. Ohta, N. Nishida, “Antireflection effect in ultrahigh spatial-frequency holographic relief gratings,” Appl. Opt. 26, 1142–1146 (1987). [CrossRef] [PubMed]
  11. E. N. Glytsis, T. K. Gaysslord, “Antireflection surface structure: dielectric layer(s) over a high spatial-frequency surface-relief grating on a lossy substrate,” Appl. Opt. 27, 4288–4303 (1988). [CrossRef] [PubMed]
  12. E. N. Glytsis, T. K. Gaylord, “High-spatial-frequency binary and multilevel stairstep gratings: polarization-selective mirrors and broadband antireflection surfaces,” Appl. Opt. 31, 4459–4470 (1992). [CrossRef] [PubMed]
  13. D. H. Raguin, G. M. Morris, “Antireflection structured surfaces for the infrared spectral region,” Appl. Opt. 32, 1154–1167 (1993). [CrossRef] [PubMed]
  14. See, for example, Electromagnetic Theory of Gratings, R. Petit, ed., Vol. 22 of Topics in Current Physics (Springer-Verlag, Berlin, 1980). [CrossRef]
  15. R. C. McPhedran, L. C. Botten, M. S. Craig, M. Nevière, D. Maystre, “Lossy lamellar gratings in the quasistatic limit,” Opt. Acta 29, P89–312 (1982). [CrossRef]
  16. J. M. Bell, G. H. Derrick, R. C. McPhedran, “Diffraction gratings in the quasistatic limit,” Opt. Acta 29, 1475–1489 (1982). [CrossRef]
  17. G. Bouchitte, R. Petit, “Homogenization techniques as applied in the electromagnetic theory of gratings,” Electromagnetics 5, 17–36 (1985). [CrossRef]
  18. P. Yeh, A. Yariv, C.-S. Hong, “Electromagnetic propagation in periodic stratified media. I. General theory,” J. Opt. Soc. Am. 67, 423–438 (1977); A. Yariv, P. Yeh, “Electromagnetic propagation in periodic stratified media. II. Birefringence, phase matching, and x-ray lasers,”J. Opt. Soc. Am. 67, 438–448 (1977). [CrossRef]
  19. A. Yariv, P. Yeh, Optical Waves in Crystals (Wiley, New York, 1984), p. 207.
  20. P. Yeh, “Electromagnetic propagation in birefringent layered media,”J. Opt. Soc. Am. 69, 742–756 (1979). [CrossRef]
  21. M. Mansuripur, “Analysis of multilayer thin-film structures containing magneto-optic and anisotropic media at oblique incidence using 2 × 2 matrices,” J. Appl. Phys. 67, 6466–6475 (1990). [CrossRef]
  22. S. M. Rytov, “Electromagnetic properties of a finely stratified medium,” Sov. Phys. JETP 2, 466–475 (1956).
  23. S. Babin, H. Haidner, P. Kipfer, A. Lang, J. T. Sheridan, W. Stork, N. Streibl, “Artificial index surface relief diffraction optical elements,” in Miniature and Micro-Optics: Fabrication, C. Roychoudhuri, W. B. Veldkamp, eds., Proc. Soc. Photo-Opt. Instrum. Eng.1751, 202–213 (1992). [CrossRef]
  24. R. M. A. Azzam, N. M. Bashara, “Polarization characteristics of scattered radiation from a diffraction grating by ellipsometry with application to surface roughness,” Phys. Rev. B 5, 4721–4729 (1972). [CrossRef]
  25. L. Cescato, E. Gluch, H. Haidner, N. Streibl, “Form birefringence of dielectric coatings and relief gratings,” in Optics in Complex Systems, F. Lanzl, H. Preuss, G. Weigelt, eds., Proc. Soc. Photo-Opt. Instrum. Eng.1319, 333–334 (1990). [CrossRef]
  26. E. Gluch, H. Haidner, P. Kipfer, J. T. Sheridan, N. Streibl, “Form birefringence of surface relief gratings and its angular dependence,” Opt. Commun. 89, 173–177 (1992). [CrossRef]
  27. W. Stork, N. Streibl, H. Haidner, P. Kipfer, “Artificial distributed-index media fabricated by zero-order gratings,” Opt. Lett. 16, 1921–1923 (1991). [CrossRef] [PubMed]
  28. M. Born, E. Wolf, Principles of Optics, 6th ed. (Pergamon, Oxford, 1980), pp. 24–30.
  29. L. Li, “A modal analysis of lamellar diffraction gratings in conical mountings,” J. Mod. Opt. 40, 553–573 (1993). [CrossRef]
  30. L. C. Botten, M. S. Craig, R. C. McPhedran, J. L. Adams, J. R. Andrewartha, “The dielectric lamellar diffraction grating,” Opt. Acta 28, 413–428 (1981). [CrossRef]
  31. L. C. Botten, M. S. Craig, R. C. McPhedran, “Highly conducting lamellar diffraction gratings,” Opt. Acta 28, 1103–1106 (1981). [CrossRef]
  32. G. Tayeb, R. Petit, “On the numerical study of deep conducting lamellar diffraction gratings,” Opt. Acta 31, 1361–1365 (1984). [CrossRef]
  33. M. G. Moharam, T. K. Gaylord, “Three-dimensional vector coupled-wave analysis of planar-grating diffractionJ. Opt. Soc. Am. 73, 1105–1112 (1983). [CrossRef]
  34. M. G. Moharam, T. K. Gaylord, “Diffraction analysis of dielectric surface-relief gratings,”J. Opt. Soc. Am. 72, 1385–1392 (1982). [CrossRef]
  35. C. W. Haggans, R. K. Kostuk, “Use of rigorous vector coupled-wave theory for designing and tolerancing surface-relief diffractive components for magneto-optical heads,” in Optical Data Storage ’91, J. J. Burke, N. Imamura, T. A. Shull, eds., Proc. Soc. Photo-Opt. Instrum. Eng.1499, 293–302 (1991). [CrossRef]
  36. E. Popov, L. Tsonev, D. Maystre, “Gratings: general properties of the Littrow mounting and energy flow distribution,” J. Mod. Opt. 37, 367–377 (1990). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited