OSA's Digital Library

Journal of the Optical Society of America A

Journal of the Optical Society of America A

| OPTICS, IMAGE SCIENCE, AND VISION

  • Vol. 10, Iss. 11 — Nov. 1, 1993
  • pp: 2307–2316

Numerical solution of diffraction problems: a method of variation of boundaries. II. Finitely conducting gratings, Padé approximants, and singularities

Oscar P. Bruno and Fernando Reitich  »View Author Affiliations


JOSA A, Vol. 10, Issue 11, pp. 2307-2316 (1993)
http://dx.doi.org/10.1364/JOSAA.10.002307


View Full Text Article

Enhanced HTML    Acrobat PDF (1120 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We recently introduced a method of variation of boundaries for the solution of diffraction problems [ J. Opt. Soc. Am. A 10, 1168 ( 1993)]. This method, which is based on a theorem of analyticity of the electromagnetic field with respect to variations of the interfaces, has been successfully applied in problems of diffraction of light by perfectly conducting gratings. We continue our investigation of diffraction problems. Using our previous results on analytic dependence with respect to the grating groove depth, we present a new numerical algorithm that applies to dielectric and metallic gratings. We also incorporate Padé approximation in our numerics. This addition enlarges the domain of applicability of our methods, and it results in computer codes that can predict more accurately the response of diffraction gratings in the resonance region. In many cases results are obtained that are several orders of magnitude more accurate than those given by other methods available at present, such as the integral or differential formalisms. We present a variety of numerical applications, including examples for several types of grating profile and for wavelengths of light ranging from microwaves to ultraviolet, and we compare our results with experimental data. We also use Padé approximants to gain insight into the analytic structure and the spectrum of singularities of the fields as functions of the groove depth. Finally, we discuss some connections between Padé approximation and another summation mechanism, enhanced convergence, which we introduced in the earlier paper. It is argued that, provided that certain numerical difficulties can be overcome, the performance of our algorithms could be further improved by a combination of these summation methods.

© 1993 Optical Society of America

History
Original Manuscript: January 13, 1993
Revised Manuscript: June 1, 1993
Manuscript Accepted: June 3, 1993
Published: November 1, 1993

Citation
Oscar P. Bruno and Fernando Reitich, "Numerical solution of diffraction problems: a method of variation of boundaries. II. Finitely conducting gratings, Padé approximants, and singularities," J. Opt. Soc. Am. A 10, 2307-2316 (1993)
http://www.opticsinfobase.org/josaa/abstract.cfm?URI=josaa-10-11-2307

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

If you are accessing the full text through a member bundle, please use the Enhanced HTML link to gain access to the citation lists and other restricted features. Note that accessing both the PDF and HTML versions of an article will count as only one download against your account.

Contact your librarian or system administrator
or
Log in to access OSA Member Subscription

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

If you are accessing the full text through a member bundle, please use the Enhanced HTML link to gain access to the citation lists and other restricted features. Note that accessing both the PDF and HTML versions of an article will count as only one download against your account.

Contact your librarian or system administrator
or
Log in to access OSA Member Subscription

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

If you wish to use one of your free member downloads to view the figures, click "Enhanced HTML" above and access the figures from the article itself or from the navigation tab.

Contact your librarian or system administrator
or
Log in to access OSA Member Subscription

You do not have subscription access to this journal. Article level metrics are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

If you are accessing the full text through a member bundle, please use the Enhanced HTML link to gain access to the citation lists and other restricted features. Note that accessing both the PDF and HTML versions of an article will count as only one download against your account.

Contact your librarian or system administrator
or
Log in to access OSA Member Subscription

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited