OSA's Digital Library

Journal of the Optical Society of America A

Journal of the Optical Society of America A

| OPTICS, IMAGE SCIENCE, AND VISION

  • Vol. 11, Iss. 1 — Jan. 1, 1994
  • pp: 288–309

Laser-guide-star systems for astronomical applications

Ronald R. Parenti and Richard J. Sasiela  »View Author Affiliations


JOSA A, Vol. 11, Issue 1, pp. 288-309 (1994)
http://dx.doi.org/10.1364/JOSAA.11.000288


View Full Text Article

Enhanced HTML    Acrobat PDF (2807 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

With computational techniques developed in the investigation of high-energy laser-beam-control systems, a set of concise analytic models describing the essential properties of a laser-guide-star phase-conjugation system has been assembled. With the aid of these models an optimization strategy for mating adaptive optics to a 4-m-class optical telescope is evolved, and it is shown that such a system might be expected to improve the effective atmospheric seeing conditions by nearly a factor of 10 within the isoplanatic patch of the turbulence probe. For operation at visible wavelengths, a compensation system having ~300 actuators and a closed-loop bandwidth of 20 Hz is recommended. All the key hardware components have already been built and tested, with the exception of a suitable laser source for high-repetition-rate illumination of the Earth’s sodium layer.

© 1994 Optical Society of America

History
Original Manuscript: March 19, 1992
Revised Manuscript: December 21, 1992
Manuscript Accepted: January 11, 1993
Published: January 1, 1994

Citation
Ronald R. Parenti and Richard J. Sasiela, "Laser-guide-star systems for astronomical applications," J. Opt. Soc. Am. A 11, 288-309 (1994)
http://www.opticsinfobase.org/josaa/abstract.cfm?URI=josaa-11-1-288


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. J. Feinleib, proposal 82-P4 (Adaptive Optics Associates, Cambridge, Mass., 1982).
  2. R. Foy, A. Labeyrie, “Feasibility of adaptive telescope with laser probe,” Astron. Astrophys. 152, 129–131 (1985).
  3. R. A. Humphreys, C. A. Primmerman, L. C. Bradley, J. Herrmann, “Atmospheric-turbulence measurements using a synthetic beacon in the mesospheric sodium layer,” Opt. Lett. 16, 1367–1369 (1991). [CrossRef] [PubMed]
  4. C. A. Primmerman, D. V. Murphy, D. A. Page, B. G. Zollars, H. T. Barclay, “Compensation of atmospheric optical distortion using a synthetic beacon,” Nature (London) 353, 141–143 (1991). [CrossRef]
  5. D. V. Murphy, C. A. Primmerman, D. A. Page, B. G. Zollars, H. T. Barclay, “Experimental demonstration of atmospheric compensation using multiple synthetic beacons,” Opt. Lett. 16, 1797–1799 (1991). [CrossRef] [PubMed]
  6. F. Roddier, M. Northcott, J. Graves, “A simple low-order adaptive optics system for near-infrared applications,” Publ. Astron. Soc. Pac. 103, 131–149 (1991). [CrossRef]
  7. A. Kolmogorov, “The local structure of turbulence in incompressible viscous fluid for very large Reynolds’ [sic] numbers,” in Turbulence, Classic Papers on Statistical Theory, S. K. Friedlander, L. Topper, eds. (Interscience, New York, 1961), pp. 151–155.
  8. D. L. Fried, “Limiting resolution looking down through the atmosphere,”J. Opt. Soc. Am. 56, 1380–1384 (1966). [CrossRef]
  9. D. P. Greenwood, “Bandwidth specification for adaptive optics systems,”J. Opt. Soc. Am. 67, 390–393 (1977). [CrossRef]
  10. M. G. Miller, P. L. Zieske, “Turbulence environmental characterization,” (Rome Air Development Center, Griffiss Air Force Base, N.Y., 1979).
  11. R. E. Hufnagel, “Variations of atmospheric turbulence,” in Digest of Topical Meeting on Optical Propagation through Turbulence (Optical Society of America, Washington, D.C., 1974), paper WA1.
  12. F. Roddier, L. Cowie, J. E. Graves, A. Songaila, D. McKenna, V. Vernin, M. Azouit, J. L. Caccia, E. Limburg, C. Roddier, D. Salmon, S. Beland, D. Cowley, S. Hill, “Seeing at Mauna Kea: a joint UH-UN-NOAO-CFHT study,” in Advanced Technology Optical Telescopes IV, L. D. Barr, ed., Proc. Soc. Photo-Opt. Instrum. Eng.1236, 485–491 (1990). [CrossRef]
  13. B. G. Zollars, “Atmospheric-turbulence compensation experiments using synthetic beacons,” Lincoln Lab. J. 5, 67–92 (1992).
  14. J. L. Bufton, “Comparison of vertical profile turbulence structure with stellar observations,” Appl. Opt. 12, 1785–1793 (1973). [CrossRef] [PubMed]
  15. J. Hardy, “Active Optics: a new technology for the control of light,” Proc. IEEE 66, 651–697 (1978). [CrossRef]
  16. F. Roddier, “Curvature sensing and compensation: a new concept in adaptive optics,” Appl. Opt. 27, 1223–1225 (1988). [CrossRef] [PubMed]
  17. J. C. Twichell, B. E. Burke, R. K. Reich, W. H. McGonagle, C. M. Huang, M. W. Bautz, J. P. Doty, G. R. Ricker, R. W. Mountain, V. S. Dolat, “Advanced CCD imager technology for use from 1 to 10000 Å,” Rev. Sci. Instrum. 61, 2744–2746 (1990). [CrossRef]
  18. H. T. Yura, “Short-term average optical-beam spread in a turbulent medium,”J. Opt. Soc. Am. 63, 567–572 (1973). [CrossRef]
  19. G. A. Tyler, D. L. Fried, “Image-position error associated with a quadrant detector,”J. Opt. Soc. Am. 72, 804–808 (1982). [CrossRef]
  20. R. J. Sasiela, J. G. Mooney, “An optical phase reconstructor based on using a multiplier-accumulator approach,” in Adaptive Optics, J. E. Ludman, ed., Proc. Soc. Photo-Opt. Instrum. Eng.551, 170–176 (1985). [CrossRef]
  21. P. Johnson, R. Trissel, L. Cuellar, B. Arnold, D. Sandler, “Real time wavefront reconstruction for a 512 subaperture adaptive optical system,” in Active and Adaptive Optical Components, M. A. Ealey, ed., Proc. Soc. Photo-Opt. Instrum. Eng.1543, 460–471 (1991). [CrossRef]
  22. D. L. Fried, “Least-square fitting a wave-front distortion estimate to an array of phase-difference measurements,”J. Opt. Soc. Am. 67, 370–375 (1977). [CrossRef]
  23. R. H. Hudgin, “Wave-front reconstruction for compensated imaging,”J. Opt. Soc. Am. 67, 375–378 (1977). [CrossRef]
  24. J. Herrmann, “Least-squares wave front errors of minimum norm,”J. Opt. Soc. Am. 70, 28–35 (1980). [CrossRef]
  25. J. H. Everson, “New developments in deformable mirror surface devices,” in Adaptive Optical Components I, S. Holly, L. James, eds., Proc. Soc. Photo-Opt. Instrum. Eng.141, 11–15 (1978). [CrossRef]
  26. J. E. Harvey, G. M. Gallahan, “Wavefront error compensation capabilities of multi-actuator deformable mirrors,” in Adaptive Optical Components I, S. Holly, L. James, eds., Proc. Soc. Photo-Opt. Instrum. Eng.141, 50–57 (1978). [CrossRef]
  27. D. P. Greenwood, “Mutual coherence function of a wave front corrected by zonal adaptive optics,”J. Opt. Soc. Am. 69, 549–553 (1979). [CrossRef]
  28. J. F. Belsher, D. L. Fried, “Adaptive optics mirror fitting error: analysis and results,” (Optical Sciences Company, Placentia, Calif., 1983).
  29. R. H. Hudgin, “Wave-front compensation error due to finite corrector-element size,”J. Opt. Soc. Am. 67, 393–395 (1977). [CrossRef]
  30. A. D. Poularikas, S. Seely, Signals and Systems (PSW Boston, Mass., 1985), Chap. 6.
  31. D. P. Greenwood, D. L. Fried, “Power spectra requirements for wave-front-compensative systems,”J. Opt. Soc. Am. 66, 193–206 (1976). [CrossRef]
  32. G. A. Tyler, “Bandwidth considerations for tracking through turbulence,” (Optical Sciences Company, Placentia, Calif., 1988).
  33. R. Q. Fugate, D. L. Fried, G. A. Ameer, B. R. Boeke, S. L. Browne, P. H. Roberts, R. E. Ruane, G. A. Tyler, L. M. Wopat, “Measurements of atmospheric wavefront distortion using scattered light from a laser guide-star,” Nature (London) 353, 144–146 (1991). [CrossRef]
  34. L. A. Thompson, C. S. Gardner, “Experiments on laser guide stars at Mauna Kea Observatory for adaptive imaging in astronomy,” Nature (London) 328, 229–231 (1987). [CrossRef]
  35. R. Foy, M. Tallon, “ATLAS experiment to test the laser probe technique for wavefront measurements,” in Active Telescope Systems, F. J. Roddier, ed., Proc. Soc. Photo-Opt. Instrum. Eng.1114, 174–183 (1989). [CrossRef]
  36. L. A. Thompson, C. S. Gardner, “Excimer laser guide star techniques for adaptive imaging in astronomy,” in Active Telescope Systems, F. J. Roddier, ed., Proc. Soc. Photo-Opt. Instrum. Eng.1114, 184–190 (1989). [CrossRef]
  37. C. S. Gardner, B. M. Welsh, L. A. Thompson, “Sodium laser guide star technique for adaptive imaging in astronomy,” in Active Telescope Systems, F. J. Roddier, ed., Proc. Soc. Photo-Opt. Instrum. Eng.1114, 191–202 (1989). [CrossRef]
  38. B. M. Welsh, C. S. Gardner, L. A. Thompson, “Effects of nonlinear resonant absorption on sodium laser guide stars,” in Active Telescope Systems, F. J. Roddier, ed., Proc. Soc. Photo-Opt. Instrum. Eng.1114, 203–214 (1989). [CrossRef]
  39. B. M. Welsh, C. S. Gardner, “Nonlinear resonant absorption effects on the design of resonance fluorescence lidars and laser guide stars,” Appl. Opt. 28, 4141–4153 (1989). [CrossRef] [PubMed]
  40. B. M. Welsh, C. S. Gardner, “Performance analysis of adaptive-optics systems using laser guide stars and slope sensors,” J. Opt. Soc. Am. A 6, 1913–1923 (1989). [CrossRef]
  41. C. S. Gardner, B. M. Welsh, L. A. Thompson, “Design and performance analysis of adaptive optical telescopes using laser guide stars,” Proc. IEEE 78, 1721–1743 (1990). [CrossRef]
  42. B. M. Welsh, L. A. Thompson, “Effects of turbulence-induced anisoplanatism on the imaging performance of adaptive-astronomical telescopes using laser guide stars,” J. Opt. Soc. Am. A 8, 69–80 (1991). [CrossRef]
  43. R. J. Sasiela, J. D. Shelton, “Transverse spectral filtering and Mellin transform techniques applied to the effect of outer scale on tilt and tilt anisoplanatism,” J. Opt. Soc. Am. A 10, 646–660 (1993). [CrossRef]
  44. J. F. Belsher, D. L. Fried, “Expected antenna gain when correcting tilt-free wavefronts,” (Optical Sciences Company, Placentia, Calif., 1984).
  45. W. L. Wolfe, G. J. Zissis, eds., The Infrared Handbook (Environmental Research Institute of Michigan, Ann Arbor, Mich., 1985), Chap. 3, pp. 20–22.
  46. E. D. Hinkley, ed., Laser Monitoring of the Atmosphere (Springer-Verlag, Berlin, 1976), Chap. 4, p. 76.
  47. R. M. Measures, Laser Remote Sensing Fundamentals and Applications (Wiley, New York, 1984), Chap. 7, p. 241.
  48. T. H. Jeys, A. A. Brailove, A. Mooradian, “Sum frequency generation of sodium resonance radiation,” Appl. Opt. 28, 2588–2591 (1989). [CrossRef] [PubMed]
  49. R. J. Sasiela, “Wave-front correction by one or more synthetic beacons,” J. Opt. Soc. Am. A 11, 379–393 (1994). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited