OSA's Digital Library

Journal of the Optical Society of America A

Journal of the Optical Society of America A

| OPTICS, IMAGE SCIENCE, AND VISION

  • Vol. 11, Iss. 11 — Nov. 1, 1994
  • pp: 2956–2968

Diffuse-reflectance model for smooth dielectric surfaces

Lawrence B. Wolff  »View Author Affiliations


JOSA A, Vol. 11, Issue 11, pp. 2956-2968 (1994)
http://dx.doi.org/10.1364/JOSAA.11.002956


View Full Text Article

Enhanced HTML    Acrobat PDF (2125 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

A reflectance model that accurately predicts diffuse reflection from smooth inhomogeneous dielectric surfaces as a function of both viewing angle and angle of incidence is proposed. Utilizing results of radiative-transfer theory for subsurface multiple scattering, this new model precisely accounts for how incident light and the distribution of subsurface scattered light are influenced by Fresnel attenuation and Snell refraction at a smooth air–dielectric surface boundary. Whereas similar assumptions about subsurface scattering and Fresnel attenuation have been made in previous research on diffuse-reflectance modeling, the proposed model combines these assumptions in a different way and yields a more accurate expression for diffuse reflection that is shown to account for a number of empirical observations not predicted by existing models. What is particularly new about this diffuse-reflectance model is the resulting significant dependence on the viewing angle with respect to the surface normal. This dependence on the viewing angle explains distinctive properties of the behavior of diffuse reflection from smooth dielectric objects, properties not accounted for by existing diffuse-reflection models. Among these properties are prominent diffuse-reflection maxima effects occurring on objects when incident point-source illumination is greater than 50° relative to viewing, including the range from 90° to 180°, where the light source is behind the object with respect to viewing. For this range of incident illumination there is significant deviation from Lambertian behavior over a large portion of most smooth dielectric object surfaces, which makes it important for the computer vision community to be aware of such effects during incorporation of reflectance models into implementation of algorithms such as shape-from-shading. A number of experimental results are presented that verify the proposed diffuse-reflectance model.

© 1994 Optical Society of America

History
Original Manuscript: July 22, 1993
Revised Manuscript: March 16, 1994
Manuscript Accepted: June 29, 1994
Published: November 1, 1994

Citation
Lawrence B. Wolff, "Diffuse-reflectance model for smooth dielectric surfaces," J. Opt. Soc. Am. A 11, 2956-2968 (1994)
http://www.opticsinfobase.org/josaa/abstract.cfm?URI=josaa-11-11-2956

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

If you are accessing the full text through a member bundle, please use the Enhanced HTML link to gain access to the citation lists and other restricted features. Note that accessing both the PDF and HTML versions of an article will count as only one download against your account.

Contact your librarian or system administrator
or
Log in to access OSA Member Subscription

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

If you are accessing the full text through a member bundle, please use the Enhanced HTML link to gain access to the citation lists and other restricted features. Note that accessing both the PDF and HTML versions of an article will count as only one download against your account.

Contact your librarian or system administrator
or
Log in to access OSA Member Subscription

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

If you wish to use one of your free member downloads to view the figures, click "Enhanced HTML" above and access the figures from the article itself or from the navigation tab.

Contact your librarian or system administrator
or
Log in to access OSA Member Subscription

You do not have subscription access to this journal. Article level metrics are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

If you are accessing the full text through a member bundle, please use the Enhanced HTML link to gain access to the citation lists and other restricted features. Note that accessing both the PDF and HTML versions of an article will count as only one download against your account.

Contact your librarian or system administrator
or
Log in to access OSA Member Subscription

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited