Expand this Topic clickable element to expand a topic
Skip to content
Optica Publishing Group

Global color constancy: recognition of objects by use of illumination-invariant properties of color distributions

Not Accessible

Your library or personal account may give you access

Abstract

Color pixel distributions provide a useful cue for object recognition but are dependent on scene illumination. We develop an algorithm that assigns color descriptors to an object that depend on the surface properties of the object and not on the illumination. An object is defined by a set of possibly textured surfaces and gives rise to a color pixel distribution. For a trichromatic system, the algorithm assumes a three-dimensional linear model for surface spectral reflectance. There are no assumptions about the contents of the scene and only weak constraints on the illumination. The global color invariants can be computed in an amount of time that is proportional to the number of pixels that define an object. A set of experiments on complex scenes under various illuminants demonstrates that the global color constancy algorithm performs significantly better than previous recognition algorithms based on color distribution.

© 1994 Optical Society of America

Full Article  |  PDF Article
More Like This
Illumination-invariant recognition of texture in color images

Glenn Healey and Lizhi Wang
J. Opt. Soc. Am. A 12(9) 1877-1883 (1995)

Use of invariants for recognition of three-dimensional color textures

Raghava Kondepudy and Glenn Healey
J. Opt. Soc. Am. A 11(11) 3037-3049 (1994)

Color constancy at a pixel

Graham D. Finlayson and Steven D. Hordley
J. Opt. Soc. Am. A 18(2) 253-264 (2001)

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Figures (17)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Tables (6)

You do not have subscription access to this journal. Article tables are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Equations (13)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Select as filters


Select Topics Cancel
© Copyright 2024 | Optica Publishing Group. All rights reserved, including rights for text and data mining and training of artificial technologies or similar technologies.