OSA's Digital Library

Journal of the Optical Society of America A

Journal of the Optical Society of America A


  • Vol. 11, Iss. 12 — Dec. 1, 1994
  • pp: 3123–3135

Double-pass and interferometric measures of the optical quality of the eye

David R. Williams, David H. Brainard, Matthew J. McMahon, and Rafael Navarro  »View Author Affiliations

JOSA A, Vol. 11, Issue 12, pp. 3123-3135 (1994)

View Full Text Article

Enhanced HTML    Acrobat PDF (1724 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We compare two methods for measuring the modulation transfer function (MTF) of the human eye: an interferometric method similar to that of Campbell and Green [ J. Physiol. (London) 181, 576 ( 1965)] and a double-pass procedure similar to that of Santamaria et al. [ J. Opt. Soc. Am. A 4, 1109 ( 1987)]. We implemented various improvements in both techniques to reduce error in the estimates of the MTF. We used the same observers, refractive state, pupil size (3 mm), and wavelength (632.8 nm) for both methods. In the double-pass method we found close agreement between the plane of subjective best focus for the observer and the plane of objective best focus, suggesting that much of the reflected light is confined within individual cones throughout its double pass through the receptor layer. The double-pass method produced MTF’s that were similar to but slightly lower than those of the interferometric method. This additional loss in modulation transfer is probably attributable to light reflected from the choroid, because green light, which reduces the contribution of the choroid to the fundus reflection, produces somewhat higher MTF’s that are consistent with the interferometric results. When either method is used, the MTF’s lie well below those obtained with the aberroscope method [ Vision Res. 28, 659 ( 1988)]. On the basis of the interferometric method, we propose a new estimate of the monochromatic MTF of the eye.

© 1994 Optical Society of America

Original Manuscript: January 3, 1994
Revised Manuscript: June 20, 1994
Manuscript Accepted: July 29, 1994
Published: December 1, 1994

David R. Williams, David H. Brainard, Matthew J. McMahon, and Rafael Navarro, "Double-pass and interferometric measures of the optical quality of the eye," J. Opt. Soc. Am. A 11, 3123-3135 (1994)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. J. Santamaria, P. Artal, J. Bescós, “Determination of the point-spread function of human eyes using a hybrid optical–digital method,” J. Opt. Soc. Am. A 4, 1109–1114 (1987). [CrossRef]
  2. F. Flamant, “Etude de la repartition de lumiére dans l’image rétinienne d’une fente,” Rev. Opt. Theor. Instrum. 34, 433–459 (1955).
  3. J. Krauskopf, “Light distribution in human retinal images,” J. Opt. Soc. Am. 52, 1046–1050 (1962). [CrossRef]
  4. F. W. Campbell, R. W. Gubisch, “Optical quality of the human eye,” J. Physiol. (London) 186, 558–578 (1966).
  5. R. Rohler, U. Miller, M. Aberl, “Zur Messung der Modulationsubertragungsfunktion des lebenden menschlichen Auges im Reflektierten Licht,” Vision Res. 9, 407–428 (1969). [CrossRef]
  6. R. Navarro, P. Artal, D. R. Williams, “Modulation transfer of the human eye as a function of retinal eccentricity,” J. Opt. Soc. Am. A 10, 201–212 (1993). [CrossRef] [PubMed]
  7. F. W. Campbell, D. G. Green, “Optical and retinal factors affecting visual resolution,” J. Physiol. (London) 181, 576–593 (1965).
  8. A. Arnulf, O. Dupuy, “La transmission des contrastes par le système optique de l’oeil et les seuils des contrastes rétiniens,” C. R. Acad. Sci. (Paris) 250, 2757–2759 (1960).
  9. S. Berger-Lheureux-Robardey, “Mesure de la fonction de transfert de modulation du système optique de l’oeil et des seuils de modulation rétiniens,” Rev. Opt. Theor. Instrum. 44, 294–323 (1965).
  10. N. Sekiguchi, D. R. Williams, D. H. Brainard, “Aberration-free measurements of the visibility of isoluminant gratings,” J. Opt. Soc. Am. A 10, 2105–2117 (1993). [CrossRef]
  11. D. R. Williams, “Visibility of interference fringes near the resolution limit,” J. Opt. Soc. Am. A 2, 1087–1093 (1985). [CrossRef] [PubMed]
  12. A. B. Watson, D. G. Pelli, “quest: a Bayesian adaptive psychometric method,” Percept. Psychophys. 33, 113–120 (1983). [CrossRef] [PubMed]
  13. J. W. Goodman, Introduction to Fourier Optics (McGraw-Hill, San Francisco, Calif., 1968).
  14. D. H. Sliney, M. L. Wolbarsht, “Safety standards and measurement techniques for high intensity light sources,” Vision Res. 20, 1133–1142 (1980). [CrossRef] [PubMed]
  15. M. Marchywka, D. G. Socker, “Modulation transfer function measurement technique for small-pixel detectors,” Appl. Opt. 31, 7198–7213 (1992). [CrossRef] [PubMed]
  16. P. Artal, S. Marcos, R. Navarro, D. R. Williams, “Odd aberrations and double-pass measurements of retinal image quality,” J. Opt. Soc. Am. A (to be published).
  17. G. Walsh, W. N. Charman, “The effect of pupil centration and diameter on ocular performance,” Vision Res. 28, 659–665 (1988). [CrossRef] [PubMed]
  18. G. J. van Blokland, “Directionality and alignment of the foveal receptors, assessed with light scattered from the human fundus in vivo,” Vision Res. 26, 495–500 (1986). [CrossRef] [PubMed]
  19. G. Westheimer, “Dependence of the magnitude of the Stiles–Crawford effect on retinal location,” J. Physiol. 192, 309–315 (1967). [PubMed]
  20. J. J. Vos, J. Walraven, A. Van Meeteren, “Light profiles of the foveal image of a point source,” Vision Res. 16, 215–219 (1976). [CrossRef] [PubMed]
  21. G. Westheimer, “The eye as an optical instrument,” in Handbook of Perception and Human Performance, K. R. Boff, L. Kaufman, J. P. Thomas, eds. (Wiley, New York, 1986), Vol. 1, pp. 4/1–4/20.
  22. D. I. A. MacLeod, D. R. Williams, W. Makous, “A visual nonlinearity fed by single cones,” Vision Res. 32, 347–363 (1992). [CrossRef] [PubMed]
  23. G. Walsh, W. N. Charman, “Objective technique for the determination of monochromatic aberrations of the human eye,” J. Opt. Soc. Am. A 1, 987–992 (1984). [CrossRef] [PubMed]
  24. H. C. Howland, B. Howland, “A subjective method for the measurement of monochromatic aberrations of the eye,” J. Opt. Soc. Am. 67, 1508–1518 (1977). [CrossRef] [PubMed]
  25. G. Walsh, W. N. Charman, “Measurement of the axial wavefront aberration of the human eye,” Ophthal. Physiol. Opt. 5, 23–31 (1985). [CrossRef]
  26. F. Berny, S. Slansky, “Wavefront determination resulting from Foucault test as applied to the human eye and visual instruments,” in Optical Instruments and Techniques, J. H. Dickenson, ed. (Oriel, Newcastle, UK, 1969), pp. 375–386.
  27. H. C. Howland, J. Buettner, “Computing high order wave aberration coefficients from variations of best focus for small artificial pupils,” Vision Res. 29, 979–983 (1989). [CrossRef] [PubMed]
  28. H. Ohzu, J. M. Enoch, “Optical modulation by the isolated human fovea,” Vision Res. 12, 245–251 (1972). [CrossRef]
  29. P. Artal, R. Navarro, “Simultaneous measurement of two point-spread functions at different locations across the human fovea,” Appl. Opt. 31, 3646–3656 (1992). [CrossRef] [PubMed]
  30. J. Liang, B. Grimm, S. Goelz, J. Bille, “Objective measurement of wave aberrations of the human eye with use of a Hartmann–Shack wave-front sensor,” J. Opt. Soc. Am. A 11, 1949–1957 (1994). [CrossRef]
  31. A. Arnulf, J. Santamaria, J. Bescós, “A cinematographic method for the dynamic study of the image formation by the human eye. Microfluctuations of the accommodation,” J. Opt. (Paris) 12, 123–128 (1981). [CrossRef]
  32. B. Chen, W. Makous, D. R. Williams, “Serial spatial filters in vision,” Vision Res. 33, 413–427 (1993). [CrossRef] [PubMed]
  33. C. Yuodelis, A. Hendrickson, “A qualitative and quantitative analysis of the human fovea during development,” Vision Res. 26, 847–876 (1986). [CrossRef] [PubMed]
  34. S. Polyak, The Vertebrate Visual System (U. Chicago Press, Chicago, Ill., 1957).
  35. H. Goldmann, “Stiles–Crawford effekt,” Ophthalmologica 103, 225–229 (1942). [CrossRef]
  36. J. Krauskopf, “Some experiments with a photoelectric ophthalmoscope,” in Performance of the Eye at Low Luminances, M. A. Bouman, J. J. Vos, eds. Excerpta Medica International Congress Series, No. 125 (Excerpta Medica Foundation, Amsterdam, 1966).
  37. J.-M. Gorrand, F. C. Delori, “Reflectometric technique for assessing photoreceptor alignment,” Vision Res. (to be published).
  38. M. Glickstein, M. Millodot, “Retinoscopy and eye size,” Science 168, 605–606 (1970). [CrossRef] [PubMed]
  39. W. N. Charman, “Some sources of discrepancy between static retinoscopy and subjective refraction,” Brit. J. Physiol. Opt. 30, 108–118 (1975).
  40. J. F. Simon, P. M. Denieul, “Influence of the size of test field employed in measurements of modulation transfer function of the eye,” J. Opt. Soc. Am. 63, 894–896 (1973). [CrossRef] [PubMed]
  41. R. A. Weale, “Polarized light and the human fundus oculi,” J. Physiol. 186, 175–186 (1966). [PubMed]
  42. G. J. van Blokland, “Ellipsometry of the human retina in vivo: preservation of polarization,” J. Opt. Soc. Am. A 2, 72–75 (1985). [CrossRef] [PubMed]
  43. L. J. Bour, “Polarized light and the eye,” in Vision and Visual Dysfunction, J. R. Cronly-Dillon, ed. (Macmillan, New York, 1991), Vol. 1, pp. 310–325.
  44. G. Westheimer, F. W. Campbell, “Light distribution in the image formed by the living human eye,” J. Opt. Soc. Am. 52, 1040–1044 (1962). [CrossRef] [PubMed]
  45. W. N. Charman, J. A. M. Jennings, “The optical quality of the retinal image as a function of focus,” Br. J. Physiol. Opt. 31, 119–134 (1976).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited