OSA's Digital Library

Journal of the Optical Society of America A

Journal of the Optical Society of America A


  • Vol. 11, Iss. 3 — Mar. 1, 1994
  • pp: 1097–1109

Binary high-frequency-carrier diffractive optical elements: electromagnetic theory

Eero Noponen and Jari Turunen  »View Author Affiliations

JOSA A, Vol. 11, Issue 3, pp. 1097-1109 (1994)

View Full Text Article

Enhanced HTML    Acrobat PDF (1544 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



Using rigorous electromagnetic diffraction theory, we evaluate the potential performance and the limitations of coding diffractive optical elements in the form of a pulse-frequency-modulated carrier grating. This coding scheme employs the first diffraction order of an ultrahigh-frequency binary carrier grating, with a period below 1.5 wavelengths. We establish that the pulse-frequency-modulation structure can be designed with the standard synthesis techniques based on paraxial scalar diffraction theory. However, we had to optimize the groove depth, the aspect ratio, and the carrier period with rigorous electromagnetic theory to achieve close to 100% efficiency and the desired polarization properties. Our method is compared with another recent coding scheme that utilizes the zeroth order of a subwavelength-period pulse-width-modulated binary carrier grating.

© 1994 Optical Society of America

Original Manuscript: June 17, 1993
Revised Manuscript: September 14, 1993
Manuscript Accepted: September 20, 1993
Published: March 1, 1994

Eero Noponen and Jari Turunen, "Binary high-frequency-carrier diffractive optical elements: electromagnetic theory," J. Opt. Soc. Am. A 11, 1097-1109 (1994)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. F. Wyrowski, O. Bryngdahl, “Digital holography as part of diffractive optics,” Rep. Prog. Phys. 54, 1481–1571 (1991). [CrossRef]
  2. P. B. Fischer, S. Y. Chou, “Sub-50 nm high aspect-ratio silicon pillars, ridges, and trenches fabricated using ultrahigh resolution electron beam lithography and reactive ion etching,” Appl. Phys. Lett. 62, 1414–1416 (1993). [CrossRef]
  3. W. Stork, N. Steibl, H. Haidner, P. Kipfer, “Artificial distributed-index media fabricated by zero-order gratings,” Opt. Lett. 16, 1921–1923 (1991). [CrossRef] [PubMed]
  4. H. Haidner, P. Kipfer, W. Stork, N. Streibl, “Zero-order gratings used as an artificial distributed index medium,” Optik 89, 107–112 (1992).
  5. H. Haidner, J. T. Sheridan, J. Schwider, N. Streibl, “Design of a blazed grating consisting of metallic subwavelength binary grooves,” Opt. Commun. 98, 5–10 (1993). [CrossRef]
  6. M. W. Farn, “Binary gratings with increased efficiency,” Appl. Opt. 31, 4453–4458 (1992). [CrossRef] [PubMed]
  7. J. Turunen, P. Blair, J. M. Miller, M. R. Taghizadeh, E. Noponen, “Bragg holograms with binary synthetic surface-relief profile,” Opt. Lett. 18, 1022–1024 (1993). [CrossRef] [PubMed]
  8. N. Streibl, “Beam shaping with optical array generators,” J. Mod. Opt. 36, 1559–1573 (1989). [CrossRef]
  9. R. Petit, ed., Electromagnetic Theory of Gratings (Springer-Verlag, Berlin, 1980). [CrossRef]
  10. K. Knop, “Rigorous diffraction theory for transmission phase gratings with deep rectangular grooves,” J. Opt. Soc. Am. 68, 1206–1210 (1978). [CrossRef]
  11. T. Shiono, M. Kitagawa, K. Setsune, T. Mitsuyu, “Reflection micro-Fresnel lenses and their use in an integrated focus sensor,” Appl. Opt. 28, 3434–3442 (1989). [CrossRef] [PubMed]
  12. N. C. Gallagher, D. W. Sweeney, “Computer-generated microwave kinoforms,” Opt. Eng. 28, 599–604 (1989). [CrossRef]
  13. A. Vasara, E. Noponen, J. Turunen, J. M. Miller, M. R. Taghizadeh, “Rigorous diffraction analysis of Dammann gratings,” Opt. Commun. 81, 337–342 (1991). [CrossRef]
  14. J. Turunen, E. Noponen, A. Vasara, J. M. Miller, M. R. Taghizadeh, “Electromagnetic theory of diffractive optics,” in Workshop on Digital Holography 19– 21 May 1992, Prague, Czechoslovakia, A. A. Pesl, ed., Proc. Soc. Photo-Opt. Instrum. Eng.1718, 90–99 (1992).
  15. J. M. Miller, M. R. Taghizadeh, J. Turunen, N. Ross, E. Noponen, A. Vasara, “Kinoform array illuminators in fused silica,” J. Mod. Opt. 40, 723–732 (1993). [CrossRef]
  16. E. Noponen, A. Vasara, J. Turunen, J. M. Miller, M. R. Taghizadeh, “Synthetic diffractive optics in the resonance domain,” J. Opt. Soc. Am. A 9, 1206–1213 (1992). [CrossRef]
  17. F. Wyrowski, “Characteristics of diffractive optical elements/ digital holograms,” in Computer and Optically Formed Holographic Optics, I. Cindrich, S. H. Lee, eds., Proc. Soc. Photo-Opt. Instrum. Eng.1211, 2–10 (1991). [CrossRef]
  18. A. Hessel, J. Schmoys, D. Y. Tseng, “Bragg-angle blazing of diffraction gratings,” J. Opt. Soc. Am. 65, 380–384 (1975). [CrossRef]
  19. E. V. Jull, J. W. Heath, G. R. Ebbeson, “Gratings that diffract all incident energy,” J. Opt. Soc. Am. 67, 557–560 (1977). [CrossRef]
  20. L. S. Cheo, J. Schmoys, A. Hessel, “On simultaneous blazing of triangular groove diffraction gratings,” J. Opt. Soc. Am. 67, 1686–1688 (1977). [CrossRef]
  21. E. G. Loewen, M. Nevière, D. Maystre, “Efficiency optimization of rectangular groove gratings for use in the visible and IR regions (TE),” Appl. Opt. 18, 2262–2266 (1979). [CrossRef] [PubMed]
  22. A. Vasara, M. R. Taghizadeh, J. Turunen, J. Westerholm, E. Noponen, H. Ichikawa, J. M. Miller, T. Jaakkola, S. Kuisma, “Binary surface-relief gratings for array illumination in digital optics,” Appl. Opt. 31, 3220–3236 (1992). [CrossRef]
  23. M. R. Schroeder, “Binaural dissimilarity and optimum ceilings for concert halls: more lateral sound diffusion,” J. Acoust. Soc. Am. 65, 958–963 (1965). [CrossRef]
  24. E. Noponen, J. Turunen, A. Vasara, “Parametric optimization of multilevel diffractive optical elements by electromagnetic theory,” Appl. Opt. 32, 5010–5012 (1992).
  25. E. Noponen, J. Turunen, A. Vasara, “Electromagnetic theory and design of diffractive lens arrays,” J. Opt. Soc. Am. A 10, 434–443 (1993). [CrossRef]
  26. S. J. Walker, J. Jahns, “Array generation with multilevel phase gratings,” J. Opt. Soc. Am. A 7, 1509–1513 (1990). [CrossRef]
  27. M. Ekberg, M. Larsson, S. Hård, J. Turunen, M. R. Taghizadeh, J. Westerholm, A. Vasara, “Multilevel graing array illuminators manufactured by electron-beam lithography,” Opt. Commun. 88, 37–41 (1992). [CrossRef]
  28. P. Ehbets, H. P. Herzig, D. Prongué, M. T. Gale, “High-efficiency continuous surface-relief gratings for two-dimensional array generation,” Opt. Lett. 17, 908–910 (1992). [CrossRef] [PubMed]
  29. J. M. Miller, M. R. Taghizadeh, J. Turunen, N. Ross, “Multilevel-grating array generators: fabrication error analysis and experiments,” Appl. Opt. 32, 2519–2525 (1992). [CrossRef]
  30. A. W. Lohmann, D. P. Paris, “Binary Fraunhofer holograms, generated by computer,” Appl. Opt. 6, 1739–1748 (1967). [CrossRef] [PubMed]
  31. D. Maystre, R. Petit, “Diffraction par un reseau lamellaire infinement conducteur,” Opt. Commun. 5, 90–93 (1972). [CrossRef]
  32. T. K. Gaylord, V. E. Baird, M. G. Moharam, “Zero-reflectivity high spatial-frequency rectangular-groove dielectric surface-relief gratings,” Appl. Opt. 25, 4562–4567 (1986). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited